DOI QR코드

DOI QR Code

Probiotic Properties and Optimization of Gamma-Aminobutyric Acid Production by Lactiplantibacillus plantarum FBT215

  • Kim, Jaegon (Department of Biological Science and Technology, Yonsei University) ;
  • Lee, Myung-Hyun (Department of Biological Science and Technology, Yonsei University) ;
  • Kim, Min-Sun (Department of Biological Science and Technology, Yonsei University) ;
  • Kim, Gyeong-Hwuii (Department of Biological Science and Technology, Yonsei University) ;
  • Yoon, Sung-Sik (Department of Biological Science and Technology, Yonsei University)
  • Received : 2022.04.22
  • Accepted : 2022.05.11
  • Published : 2022.06.28

Abstract

Gamma-aminobutyric acid (GABA) improves various physiological illnesses, including diabetes, hypertension, depression, memory lapse, and insomnia in humans. Therefore, interest in the commercial production of GABA is steadily increasing. Lactic acid bacteria (LAB) have widely been reported as a GABA producer and are safe for human consumption. In this study, GABA-producing LAB were preliminarily identified and quantified via GABase assay. The acid and bile tolerance of the L. plantarum FBT215 strain were evaluated. The one-factor-at-a-time (OFAT) strategy was applied to determine the optimal conditions for GABA production using HPLC. Response surface methodology (RSM) with Box-Behnken design was used to predict the optimum GABA production. The strain FBT215 was shown to be acid and bile tolerant. The optimization of GABA production via the OFAT strategy resulted in an average GABA concentration of 1688.65 ± 14.29 ㎍/ml, while it was 1812.16 ± 23.16 ㎍/ml when RSM was applied. In conclusion, this study provides the optimum culture conditions for GABA production by the strain FBT215 and indicates that L. plantarum FBT215 is potentially promising for commercial functional probiotics with health claims.

Keywords

Acknowledgement

This work was supported by a grant from the Commercializations Promotion Agency for R&D Outcomes (COMPA), funded by the Ministry of Science and ICT, Republic of Korea (Project Number: 1711150496).

References

  1. Bowery NG, Smart TG. 2006. GABA and glycine as neurotransmitters: a brief history. Br. J. Pharmacol. 147: S109-S119. https://doi.org/10.1038/sj.bjp.0706443
  2. Hepsomali P, Groeger JA, Nishihira J, Scholey A. 2020. Effects of oral gamma-aminobutyric acid (GABA) administration on stress and sleep in humans: a systematic review. Front. Neurosci. 14: 923. https://doi.org/10.3389/fnins.2020.00923
  3. Tsai JS, Lin YS, Pan BS, Chen TJ. 2006. Antihypertensive peptides and γ-aminobutyric acid from prozyme 6 facilitated lactic acid bacteria fermentation of soymilk. Process Biochem. 41: 1282-1288. https://doi.org/10.1016/j.procbio.2005.12.026
  4. Boonstra E, de Kleijn R, Colzato LS, Alkemade A, Forstmann BU, Nieuwenhuis S. 2015. Neurotransmitters as food supplements: the effects of GABA on brain and behavior. Front. Psychol. 6: 1520. https://doi.org/10.3389/fpsyg.2015.01520
  5. Dhakal R, Bajpai VK, Baek KH. 2012. Production of gaba (γ-aminobutyric acid) by microorganisms: a review. Braz. J. Microbiol. 43: 1230-1241. https://doi.org/10.1590/S1517-83822012000400001
  6. Hwang CE, Haque MA, Lee JH, Joo OS, Kim SC, Lee HY, et al. 2018. Comparison of γ-aminobutyric acid and isoflavone aglycone contents, to radical scavenging activities of high-protein soybean sprouting by lactic acid fermentation with Lactobacillus brevis. Korean J. Food Preserv. 25: 7-18. https://doi.org/10.11002/KJFP.2018.25.1.7
  7. Lim HS, Cha IT, Roh SW, Shin HH, Seo MJ. 2017. Enhanced production of gamma-aminobutyric acid by optimizing culture conditions of Lactobacillus brevis HYE1 isolated from Kimchi, a Korean fermented food. J. Microbiol. Biotechnol. 27: 450-459. https://doi.org/10.4014/jmb.1610.10008
  8. Han SH, Hong KB, Suh HJ. 2017. Biotransformation of monosodium glutamate to gamma-aminobutyric acid by isolated strain Lactobacillus brevis L-32 for potentiation of pentobarbital-induced sleep in mice. Food Biotechnol. 31: 80-93. https://doi.org/10.1080/08905436.2017.1301821
  9. Seo M-J, Nam Y-D, Park S-L, Lee S-Y, Yi S-H, Lim S-I. 2013. γ-Aminobutyric acid production in skim milk co-fermented with Lactobacillus brevis 877G and Lactobacillus sakei 795. Food Sci. Biotechnol. 22: 751-755. https://doi.org/10.1007/s10068-013-0141-6
  10. Franciosi E, Carafa I, Nardin T, Schiavon S, Poznanski E, Cavazza A, et al. 2015. Biodiversity and gamma-aminobutyric acid production by lactic acid bacteria isolated from traditional alpine raw cow's milk cheeses. Biomed Res. Int. 2015: 625740. https://doi.org/10.1155/2015/625740
  11. Hiraga K, Ueno Y, Sukontasing S, Tanasupawat S, Oda K. 2008. Lactobacillus senmaizukei sp. nov., isolated from Japanese pickle. Int. J. Syst. Evol. Microbiol. 58: 1625-1629. https://doi.org/10.1099/ijs.0.65677-0
  12. Rayavarapu B, Tallapragada P, Usha M. 2021. Optimization and comparison of γ-aminobutyric acid (GABA) production by LAB in soymilk using RSM and ANN models. Beni-Suef Univ. J. Basic Appl. Sci. 10: 1-15. https://doi.org/10.1186/s43088-020-00091-7
  13. Kim NY, Kim SK, Ra CH. 2021. Evaluation of gamma-aminobutyric acid (GABA) production by Lactobacillus plantarum using two-step fermentation. Bioproc. Biosyst. Eng. 44: 2099-2108. https://doi.org/10.1007/s00449-021-02586-8
  14. Li H, Qiu T, Gao D, Cao Y. 2010. Medium optimization for production of gamma-aminobutyric acid by Lactobacillus brevis NCL912. Amino Acids 38: 1439-1445. https://doi.org/10.1007/s00726-009-0355-3
  15. Wahid Z, Nadir N. 2013. Improvement of one factor at a time through design of experiments. World Appl. Sci. J. 21: 56-61.
  16. Binh TT, Ju WT, Jung WJ, Park RD. 2014. Optimization of γ-amino butyric acid production in a newly isolated Lactobacillus brevis. Biotechnol. Lett. 36: 93-98. https://doi.org/10.1007/s10529-013-1326-z
  17. Kook M-C, Seo M-J, Cheigh C-I, Pyun Y-R, Cho S-C, Park H. 2010. Enhanced production of γ-aminobutyric acid using rice bran extracts by Lactobacillus sakei B2-16. J. Microbiol. Biotechnol. 20: 763-766. https://doi.org/10.4014/jmb.0911.11016
  18. Lim HS, Cha I-T, Lee H, Seo M-J. 2016. Optimization of γ-aminobutyric acid production by Enterococcus faecium JK29 isolated from a traditional fermented foods. Microbiol. Biotechnol. Lett. 44: 26-33. https://doi.org/10.4014/mbl.1512.12004
  19. Aydar AY. 2018. Utilization of response surface methodology in optimization of extraction of plant materials. pp. 157-169. Ch. 10. Statistical approaches with emphasis on design of experiments applied to chemical processes. Croatia.
  20. Sun Y, Li T, Yan J, Liu J. 2010. Technology optimization for polysaccharides (POP) extraction from the fruiting bodies of Pleurotus ostreatus by Box-Behnken statistical design. Carbohydr. Polym. 80: 242-247. https://doi.org/10.1016/j.carbpol.2009.11.018
  21. Survase SA, Annapure US, Singhal RS. 2009. Statistical optimization for improved production of cyclosporin a in solid-state fermentation. J. Microbiol. Biotechnol. 19: 1385-1392. https://doi.org/10.4014/jmb.0901.0035
  22. Kim J, Yoon YW, Kim MS, Lee MH, Kim GA, Bae K, et al. 2022. γ-Aminobutyric acid fermentation in MRS-based medium by the fructophilic Lactiplantibacillus plantarum Y7. Food Sci. Biotechnol. 31: 333-341. https://doi.org/10.1007/s10068-022-01035-w
  23. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173: 697-703. https://doi.org/10.1128/jb.173.2.697-703.1991
  24. Pan XD, Chen FQ, Wu TX, Tang HG, Zhao ZY. 2009. The acid, bile tolerance and antimicrobial property of Lactobacillus acidophilus NIT. Food Control 20: 598-602. https://doi.org/10.1016/j.foodcont.2008.08.019
  25. Goldin BR, Gorbach SL, Saxelin M, Barakat S, Gualtieri L, Salminen S. 1992. Survival of Lactobacillus species (strain GG) in human gastrointestinal-tract. Digest Dis. Sci. 37: 121-128. https://doi.org/10.1007/BF01308354
  26. Kanklai J, Somwong TC, Rungsirivanich P, Thongwai N. 2020. Screening of GABA-producing lactic acid bacteria from Thai fermented foods and probiotic potential of Levilactobacillus brevis F064A for GABA-fermented mulberry juice production. Microorganisms 9: 33. https://doi.org/10.3390/microorganisms9010033
  27. Wu Z, Wu J, Lang F, Cai Z, Zeng X, Guo Y, et al. 2020. Characterization of the sortase A from Lactobacillus acidophilus ATCC 4356 involved in adherence to intestinal cells. Future Microbiol. 15: 485-496. https://doi.org/10.2217/fmb-2019-0219
  28. Remus DM, Bongers RS, Meijerink M, Fusetti F, Poolman B, de Vos P, et al. 2013. Impact of Lactobacillus plantarum sortase on target protein sorting, gastrointestinal persistence, and host immune response modulation. J. Bacteriol. 195: 502-509. https://doi.org/10.1128/JB.01321-12
  29. Matejcekova Z, Spodniakova S, Dujmic E, Liptakova D, Valik L. 2019. Modelling growth of Lactobacillus plantarum as a function of temperature: effects of media. J. Food Nutr. Res. 58: 125-134.
  30. Barla F, Koyanagi T, Tokuda N, Matsui H, Katayama T, Kumagai H, et al. 2016. The γ-aminobutyric acid-producing ability under low pH conditions of lactic acid bacteria isolated from traditional fermented foods of Ishikawa Prefecture, Japan, with a strong ability to produce ACE-inhibitory peptides. Biotechnol. Rep (Amst). 10: 105-110. https://doi.org/10.1016/j.btre.2016.04.002
  31. Cataldo PG, Villegas JM, Savoy de Giori G, Saavedra L, Hebert EM. 2020. Enhancement of γ-aminobutyric acid (GABA) production by Lactobacillus brevis CRL 2013 based on carbohydrate fermentation. Int. J. Food Microbiol. 333: 108792. https://doi.org/10.1016/j.ijfoodmicro.2020.108792
  32. Harnentis H, Nurmiati N, Marlida Y, Adzitey F, Huda N. 2019. γ-Aminobutyric acid production by selected lactic acid bacteria isolate of an Indonesian indigenous fermented buffalo milk (dadih) origin. Vet. World 12: 1352-1357. https://doi.org/10.14202/vetworld.2019.1352-1357
  33. Lim HS, Cha IT, Roh SW, Shin HH, Seo MJ. 2017. Enhanced production of γ-aminobutyric acid by optimizing culture conditions of Lactobacillus brevis HYE1 isolated from Kimchi, a Korean fermented food. J. Microbiol. Biotechnol. 27: 450-459. https://doi.org/10.4014/jmb.1610.10008
  34. Li YD, Wang T, Li S, Yin PP, Sheng HY, Wang TB, et al. 2022. Influence of GABA-producing yeasts on cheese quality, GABA content, and the volatilome. LWT 154: 15.
  35. Mara P, Fragiadakis GS, Gkountromichos F, Alexandraki D. 2018. The pleiotropic effects of the glutamate dehydrogenase (GDH) pathway in Saccharomyces cerevisiae. Microb. Cell Fact. 17: 170. https://doi.org/10.1186/s12934-018-1018-4
  36. Komatsuzaki N, Shima J, Kawamoto S, Momose H, Kimura T. 2005. Production of γ-aminobutyric acid (GABA) by Lactobacillus paracasei isolated from traditional fermented foods. Food Microbiol. 22: 497-504. https://doi.org/10.1016/j.fm.2005.01.002
  37. Hussin FS, Chay SY, Hussin ASM, Ibadullah WZW, Muhialdin BJ, Abd Ghani MS, et al. 2021. GABA enhancement by simple carbohydrates in yoghurt fermented using novel, self-cloned Lactobacillus plantarum Taj-Apis362 and metabolomics profiling. Sci. Rep. 11: 9417. https://doi.org/10.1038/s41598-021-88436-9
  38. Rayavarapu B, Tallapragada P, Ms U. 2021. Optimization and comparison of γ-aminobutyric acid (GABA) production by LAB in soymilk using RSM and ANN models. Beni-Suef Univ. J. Basic Appl. Sci. 10: 14. https://doi.org/10.1186/s43088-021-00100-3
  39. Gharehyakheh S, Rad AH, Nateghi L, Varmira K. 2019. Production of GABA-enriched honey syrup using Lactobacillus bacteria isolated from honey bee stomach. J. Food Process Preserv. 43: e14054.
  40. Diez-Gutierrez L, San Vicente L, Barron LJR, Villaran MD, Chavarri M. 2020. γ-Aminobutyric acid and probiotics: Multiple health benefits and their future in the global functional food and nutraceuticals market. J. Funct. Foods 64: 103669. https://doi.org/10.1016/j.jff.2019.103669
  41. Kim M-J, Kim K-S. 2012. Isolation and identification of γ-aminobutyric acid (GABA)-producing lactic acid bacteria from Kimchi. J. Korean Soc. Appl. Biol. Chem. 55: 777-785. https://doi.org/10.1007/s13765-012-2174-6
  42. Li H, Cao Y. 2010. Lactic acid bacterial cell factories for γ-aminobutyric acid. Amino Acids 39: 1107-1116. https://doi.org/10.1007/s00726-010-0582-7
  43. Tajabadi N, Ebrahimpour A, Baradaran A, Rahim RA, Mahyudin NA, Manap MY, et al. 2015. Optimization of γ-aminobutyric acid production by Lactobacillus plantarum Taj-Apis362 from honeybees. Molecules 20: 6654-6669. https://doi.org/10.3390/molecules20046654
  44. Kwon SY, Garcia CV, Song YC, Lee SP. 2016. GABA-enriched water dropwort produced by co-fermentation with Leuconostoc mesenteroides SM and Lactobacillus plantarum K154. LWT 73: 233-238. https://doi.org/10.1016/j.lwt.2016.06.002
  45. Zareian M, Ebrahimpour A, Mohamed AKS, Saari N. 2013. Modeling of glutamic acid production by Lactobacillus plantarum MNZ. Electron J. Biotechnol. 16. http://dx.doi.org/10.2225/vol16-issue4-fulltext-10.
  46. Tung YT, Lee BH, Liu CF, Pan TM. 2011. Optimization of culture condition for ACEI and GABA production by lactic acid bacteria. J. Food Sci. 76: M585-M591. https://doi.org/10.1111/j.1750-3841.2011.02379.x
  47. Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, et al. 2011. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl. Acad. Sci. USA 108: 16050-16055. https://doi.org/10.1073/pnas.1102999108
  48. Janik R, Thomason LAM, Stanisz AM, Forsythe P, Bienenstock J, Stanisz GJ. 2016. Magnetic resonance spectroscopy reveals oral Lactobacillus promotion of increases in brain GABA, N-acetyl aspartate and glutamate. Neuroimage 125: 988-995. https://doi.org/10.1016/j.neuroimage.2015.11.018
  49. Busler J, Coello E, Liao V, Lin A, Mahon P. 2021. Cortical GABA and perceived stress in adults. Biol. Psychiatry 89: S381-S382.