DOI QR코드

DOI QR Code

Decision support system for underground coal pillar stability using unsupervised and supervised machine learning approaches

  • Received : 2022.02.21
  • Accepted : 2022.06.14
  • Published : 2022.07.25

Abstract

Coal pillar assessment is of broad importance to underground engineering structure, as the pillar failure can lead to enormous disasters. Because of the highly non-linear correlation between the pillar failure and its influential attributes, conventional forecasting techniques cannot generate accurate outcomes. To approximate the complex behavior of coal pillar, this paper elucidates a new idea to forecast the underground coal pillar stability using combined unsupervised-supervised learning. In order to build a database of the study, a total of 90 patterns of pillar cases were collected from authentic engineering structures. A state-of-the art feature depletion method, t-distribution symmetric neighbor embedding (t-SNE) has been employed to reduce significance of actual data features. Consequently, an unsupervised machine learning technique K-mean clustering was followed to reassign the t-SNE dimensionality reduced data in order to compute the relative class of coal pillar cases. Following that, the reassign dataset was divided into two parts: 70 percent for training dataset and 30 percent for testing dataset, respectively. The accuracy of the predicted data was then examined using support vector classifier (SVC) model performance measures such as precision, recall, and f1-score. As a result, the proposed model can be employed for properly predicting the pillar failure class in a variety of underground rock engineering projects.

Keywords

Acknowledgement

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

References

  1. Ahmad, M., Al-Shayea, N.A., Tang, X.W., Jamal, A.M., Al-Ahmadi, H. and Ahmad, F. (2020), "Predicting the pillar stability of underground mines with random trees and C4.5 decision trees", Appl. Sci., 10(18), 6486. https://doi.org/10.3390/app10186486.
  2. Akinnikawe, O., Lyne, S. and Roberts, J. (2018), "Synthetic well log generation using machine learning techniques", Proceedings of the Unconventional Resources Technology Conference, Houston, Texas, 23-25 July. Society of Exploration Geophysicists., American Association of Petroleum Geologists, Society of Petroleum Engineers.
  3. Albuslimi, M., Alkalby, Y. and Al-Taweel, T. (2021), "K-mean clustering analysis and logistic boosting regression for rock facies characterization and classification in Zubair reservoir in Luhais oil field, Southern Iraq", The Iraqi Geological J., 54(28), 65-75. https://doi.org/10.46717/igj.54.2B.6Ms-2021-08-26.
  4. Aljanabi, Q.A., Chik. Z., Allawi, M.F., El-Shafie, A.H., Ahmed, A.N. and El-Shafie, A. (2018), "Support vector regression-based model for prediction of behavior stone column parameters in soft clay under highway embankment", Neural Comput. Appl., 30(8), 2459-69. https://doi.org/10.1007/s00521-016-2807-5.
  5. Asteris, P.G., Mamou, A., Hajihassani, M., Hasanipanah, M., Koopialipoor, M., Le, T.T. and Armaghani, D.J. (2021), "Soft computing based closed form equations correlating L and N-type Schmidt hammer rebound numbers of rocks", Transportation Geotech., 29, 100588. https://doi.org/10.1016/j.trgeo.2021.100588.
  6. Ben-Hur, A. and Weston, J. (2010), "A user's guide to support vector machines. InData mining techniques for the life sciences", Humana Press.
  7. Brady, B.H. and Brown, E.T. (2004), "Rock Mechanics for underground mining", Kluwer Academic Publishers. Dordrecht.
  8. Chen, G., Jia, Z. and Ke, J. (1997), "Probabilistic analysis of underground excavation stability", Int. J. Rock Mech. Min. Sci., 34(3-4):51-e1. https://doi.org/10.1016/S1365-1609(97)00167-6.
  9. Chen, L., Zhou, Z., Zang, C., Zeng, L. and Zhao, Y. (2019), "Failure pattern of large-scale goaf collapse and a controlled roof caving method used in gypsum mine", Geomech. Eng., 18(4), 449-457. https://doi.org/10.12989/gae.2019.18.4.449.
  10. Coates, D.F. (1981), "Caving, subsidence, and ground control. Rock Mechanics Principles", CANMET, Department of Energy, Mines and Resources., Canada.
  11. Ding, H., Li, G., Dong, X. and Lin, Y. (2018), "Prediction of pillar stability for underground mines using the stochastic gradient boosting technique", IEEE Access, 6, 69253-69264. https://doi.org/10.1109/ACCESS.2018.2880466.
  12. Ehteram, M., Singh, V.P., Ferdowsi, A., Mousavi, S.F., Farzin, S., Karami, H., Mohd, N.S., Afan, H.A., Lai, S.H., Kisi, O. and Malek, M.A. (2019), "An improved model based on the support vector machine and cuckoo algorithm for simulating reference evapotranspiration", PloS one., 14(5), e0217499. https://doi.org/10.1371/journal.pone.0217499.
  13. Fang, Z. and Harrison, J.P. (2002), "Numerical analysis of progressive fracture and associated behaviour of mine pillars by use of a local degradation model", Min. Tech., 111(1), 59-72. https://doi.org/10.1179/mnt.2002.111.1.59.
  14. Federico, F. and Screpanti, S. (2002), "Stability analysis of cavities excavated in roman pyroclastic rocks", In: XXI Convegno Nazionale di Geotecnica Opere geotecniche in ambiente urbano, L'aquila (in italian).
  15. Ghasemi, E., Ataei, M. and Shahriar, K. (2014), "An intelligent approach to predict pillar sizing in designing room and pillar coal mines", Int. J. Rock Mech. Min. Sci., 65, 86-95. https://doi.org/10.1016/j.ijrmms.2013.11.009
  16. Gonzalez-Nicieza, C., A lvarez-Fernandez, M.I., Menendez-Diaz, A. and Alvarez-Vigil, A.E. (2014), "A comparative analysis of pillar design methods and its application to marble mines", Rock Mech. Rock Eng., 39(5), 421-44. https://doi.org/10.1007/s00603-005-0078-z.
  17. Griffiths, D.V., Fenton, G.A. and Lemons, C.B. (2002), "Probabilistic analysis of underground pillar stability", Int. J. Numer. Anal. Method. Geomech., 26(8), 775-91. https://doi.org/10.1002/nag.222.
  18. Han, J., Pei, J. and Kamber, M. (2011), Data mining: concepts and techniques.
  19. Hedley, D.G.F. (1972), Stope-and-pillar design for the Elliot Lake Uranium Mines.
  20. Hinton, G. and Roweis, S. (2002), "Stochastic Neighbor Embedding; Advances in Neural Information Processing Systems", 551 The MIT Press., Cambridge, MA, USA.
  21. Idris, M.A., Saiang, D. and Nordlund, E. (2011), "Probabilistic analysis of open stope stability using numerical modelling", Int. J. Min. Mineral Eng., 3(3), 194-219. https://doi.org/10.1504/IJMME.2011.043849
  22. Idris, M.A., Saiang, D. and Nordlund, E. (2015), "Stochastic assessment of pillar stability at Laisvall mine using artificial neural network", Tunn. Undergr. Sp. Tech., 49, 307-319. https://doi.org/10.1016/j.tust.2015.05.003.
  23. Jian, Z.H., Li, X.B., Shi, X.Z., Wei, W.E. and Wu, B.B. (2011), "Predicting pillar stability for underground mine using Fisher discriminant analysis and SVM methods", T. Nonferrous Metals Soc. China., 21(12), 2734-2743. https://doi.org/10.1016/S1003-6326(11)61117-5.
  24. Joyce, M. (2011), "Kullback-leibler divergence. In International Encyclopedia of Statistical Science", Berlin/Heidelberg, Germany.
  25. Kamran, M. and Shahani, N.M. (2022), "Decision support system for the prediction of mine fire levels in underground coal mining using machine learning approaches", Min. Metallurgy Exploration, 39, 591-601. https://doi.org/10.1007/s42461-022-00569-1
  26. Leake, M.R., Conrad, W.J., Westman, E.C., Afrouz, S.G. and Molka, R.J. (2017), "Microseismic monitoring and analysis of induced seismicity source mechanisms in a retreating room and pillar coal mine in the Eastern United States", Undergr. Sp., 2(2), 115-124. https://doi.org/10.1016/j.undsp.2017.05.002.
  27. Li, C., Zhou, J., Armaghani, D.J., Cao, W. and Yagiz, S. (2021), "Stochastic assessment of hard rock pillar stability based on the geological strength index system", Geomech. Geophys. GeoEnergy Geo-Resour., 7(2), 1-24. https://doi.org/10.1007/s40948-021-00243-8.
  28. Li, C., Zhou, J., Armaghani, D.J. and Li, X. (2021), "Stability analysis of underground mine hard rock pillars via combination of finite difference methods, neural networks, and Monte Carlo simulation techniques", Undergr. Sp., 6(4), 379-395. https://doi.org/10.1016/j.undsp.2020.05.005.
  29. Li, N., Zare, M., Yi, C. and Jimenez, R. (2022). "Stability risk assessment of underground rock pillars using logistic model trees", Int. J. Environ. Res. Health, 19(4), 2136. https://doi.org/10.3390/ijerph19042136.
  30. Liang, W., Luo, S., Zhao, G. and Wu, H. (2020), "Predicting hard rock pillar stability using GBDT, XGBoost, and LightGBM algorithms", Mathematics., 8(5), 765. https://doi.org/10.3390/math8050765.
  31. Lilly, P.A. and Li, J. (2000), "Estimating excavation reliability from displacement modelling", Int. J. Rock Mech. Min Sci., 37(8), 1261-1265. https://doi.org/10.1016/S1365-1609(00)00053-8
  32. Liu, H., Li, X., Gao, X., Long, K. and Chen, P. (2021), "Research on no coal pillar protection technology in a double lane with pre-set isolation wall", Geomech. Eng., 27(6), 537-550. https://doi.org/10.12989/gae.2021.27.6.537.
  33. Liu, H., Yang, J., Ye, M., James, S.C., Tang, Z., Dong, J. and Xing, T. (2021), "Using t-distributed Stochastic Neighbor Embedding (t-SNE) for cluster analysis and spatial zone delineation of groundwater geochemistry data", J. Hydrology., 1, 597. 126146. https://doi.org/10.1016/j.jhydrol.2021.126146.
  34. Lunder, P.J. and Pakalnis, R.C. (1997), "Determination of the strength of hard-rock mine pillars", CIM bulletin., 51-55.
  35. Martin, C.D. and Maybee, W.G. (2000), "The strength of hard-rock pillars", Int. J. Rock Mech. Min. Sci.., 37(8), 1239-46. https://doi.org/10.1016/S1365-1609(00)00032-0.
  36. Mohan, G.M., Sheorey, P.R. and Kushwaha, A. (2001), "Numerical estimation of pillar strength in coal mines", Int. J. Rock Mech. Min. Sci., 38(8), 1185-1192. https://doi.org/10.1016/S1365-1609(01)00071-5.
  37. Monjezi, M., Hesami, S.M. and Khandelwal, M. (2011), "Superiority of neural networks for pillar stress prediction in bord and pillar method", Arabian J. Geosci., 4(5-6), 845-853. https://doi.org/10.1007/s12517-009-0101-x.
  38. Obert, L. and Duvall, W.I. (1967), "Rock mechanics and the design of structures in rock", New York: Wiley.
  39. Park, D., Kim, H.M., Ryu, D.W., Song, W.K. and Sunwoo, C. (1997), "Application of a point estimate method to the probabilistic limit-state design of underground structures", Int. J. Rock Mech. Min. Sci., 51, 97-104. https://doi.org/10.1016/j.ijrmms.2012.01.014.
  40. Parsajoo, M., Armaghani, D.J., Mohammed, A.S., Khari, M., and Jahandari, S. (2021), "Tensile strength prediction of rock material using non-destructive tests: A comparative intelligent study", Transportation Geotech., 31, 100652. https://doi.org/10.1016/j.trgeo.2021.100652.
  41. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V. and Vanderplas, J. (2011), "Scikit-learn: Machine learning in Python", J. Machine Learn. Res., 12, 2825-2830.
  42. Potvin, Y. (1989), "Design guidelines for open stope support", CIM bulletin., 82(926), 53-62.
  43. Prassetyo, S.H., Irnawan, M.A., Simangunsong, G.M., Wattimena, R.K., Arif, I., Rai, M.A. (2019), "New coal pillar strength formulae considering the effect of interface friction", Int. J. Rock Mech. Min. Sci., 123, 104102. https://doi.org/10.1016/j.ijrmms.2019.104102.
  44. Qin, S., Jiao, J.J., Tang, C.A. and Li, Z. (2006), "Instability leading to coal bumps and nonlinear evolutionary mechanisms for a coal-pillar-and-roof system", Int. J. Solids Struct., 43(25-26), 7407-7423. https://doi.org/10.1016/j.ijsolstr.2005.06.087.
  45. Qiu, P., Wang, J., Ning, J., Liu, X., Hu, S. and Gu, Q. (2019). "Rock burst criteria of deep residual coal pillars in an underground coal mine: a case study", Geomech. Eng., 19(6), 499-511. https://doi.org/10.12989/gae.2019.19.6.499.
  46. Rastiello, G., Federico, F. and Screpanti, S. (2015), "New soft rock pillar strength formula derived through parametric FEA using a critical state plasticity model", Rock Mech. Rock Eng., 48(5), 2077-2091. https://doi.org/10.1007/s00603-014-0693-7.
  47. Recio-Gordo, D. and Jimenez, R. (1997), "A probabilistic extension to the empirical ALPS and ARMPS systems for coal pillar design", Int. J. Rock Mech. Min. Sci., 52, 181-187. https://doi.org/10.1016/j.ijrmms.2012.03.009.
  48. Salamon, M.D.G. and Munro, A. (1967), "A study of the strength of coal pillars", J. Southern African Inst. Min. Metallurgy., 68(2), 55-67. https://hdl.handle.net/10520/AJA0038223X_3918.
  49. Santos, C.F., Bieniawski, Z.T. (1989), "Floor design in underground coal mines", Rock Mech. Rock Eng., 22(4), 249-271. https://doi.org/10.1007/BF01262282.
  50. Sarfarazi, V., Abharian, S. and Ghorbani, A. "Physical test and PFC modelling of rock pillar failure containing two neighboring joints and one hole", Smart Struct. Syst., 27(1), 123-137. https://doi.org/10.12989/sss.2021.27.1.123.
  51. Sheorey, P.R. (1993), "Design of coal pillar arrays and chain pillars", Anal. Des. Method., 631-670. https://doi.org/10.1016/B978-0-08-040615-2.50030-7.
  52. Sheorey, P.R., Das, M.N., Bordia, S.K. and Singh, B. (1986), "Pillar strength approaches based on a new failure criterion for coal seams", Int. J. Min. Geol. Eng., 4(4), 273-290. https://doi.org/10.1007/BF01552957.
  53. Ullah, B., Kamran, M. and Rui, Y. (2022), "Predictive Modeling of Short-Term Rockburst for the Stability of Subsurface Structures Using Machine Learning Approaches: t-SNE, K-Means Clustering and XGBoost", Mathematics, 10(3), 449. https://doi.org/10.3390/math10030449
  54. Van, M.L. and Hinton, G. (2008), "Visualizing data using t-SNE", J. Machine Learn. Res., 9(11).
  55. Ventura, R. and Berjaga, X. (2015), "Comparison of multivariate analysis techniques in plastic injection moulding process", Proceedings of the 2015 IEEE 20th Conference on Emerging Technologies & Factory Automation (ETFA), 1-6.
  56. Wattimena, R.K., Kramadibrata, S., Sidi, I.D. and Azizi, M.A. (2013), "Developing coal pillar stability chart using logistic regression", Int. J. Rock Mech. Min. Sci., 58, 55-60. https://doi.org/10.1016/j.ijrmms.2012.09.004.
  57. Wu, J. (2012), "Advances in K-means clustering: a data mining thinking", Springer Science & Business Media, Jul 9.
  58. Wu, X., Kumar, V., Quinlan, J.R., Ghosh, J., Yang, Q., Motoda, H. and Steinberg, D. (2008), "Top 10 algorithms in data mining", Knowledge and information systems", 14(1), 1-37. https://doi.org/10.1007/s10115-007-0114-2.
  59. Zhao, S., Sui, Q., Cao, C., Wang, X., Wang, C., Zhao, D. and Zhao, Y. (2021), "Mechanical model of lateral fracture for the overlying hard rock strata along coal mine goaf", Geomech. Eng., 27(1), 75-85. https://doi.org/10.12989/gae.2021.27.1.075.
  60. Zhao, Y., Gong, S., Zhang, C., Zhang, Z. and Jiang, Y. (2018), "Fractal characteristics of crack propagation in coal under impact loading", Fractals., 26(02)1840014. https://doi.org/10.3390/w11061231.
  61. Zhou, J., Li, X. and Mitri, H.S. (2015), "Comparative performance of six supervised learning methods for the development of models of hard rock pillar stability prediction", Nat. Hazards., 79(1), 291-316. https://doi.org/10.1007/s11069-015-1842-3.
  62. Zhou, J., Zhu, S., Qiu, Y., Armaghani, D. J., Zhou, A. and Yong, W. (2022), "Predicting tunnel squeezing using support vector machine optimized by whale optimization algorithm", Acta Geotechnica, 17(4), 1343-1366. https://doi.org/10.1007/s11440-022-01450-7.