Acknowledgement
This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
References
- Ahmad, M., Al-Shayea, N.A., Tang, X.W., Jamal, A.M., Al-Ahmadi, H. and Ahmad, F. (2020), "Predicting the pillar stability of underground mines with random trees and C4.5 decision trees", Appl. Sci., 10(18), 6486. https://doi.org/10.3390/app10186486.
- Akinnikawe, O., Lyne, S. and Roberts, J. (2018), "Synthetic well log generation using machine learning techniques", Proceedings of the Unconventional Resources Technology Conference, Houston, Texas, 23-25 July. Society of Exploration Geophysicists., American Association of Petroleum Geologists, Society of Petroleum Engineers.
- Albuslimi, M., Alkalby, Y. and Al-Taweel, T. (2021), "K-mean clustering analysis and logistic boosting regression for rock facies characterization and classification in Zubair reservoir in Luhais oil field, Southern Iraq", The Iraqi Geological J., 54(28), 65-75. https://doi.org/10.46717/igj.54.2B.6Ms-2021-08-26.
- Aljanabi, Q.A., Chik. Z., Allawi, M.F., El-Shafie, A.H., Ahmed, A.N. and El-Shafie, A. (2018), "Support vector regression-based model for prediction of behavior stone column parameters in soft clay under highway embankment", Neural Comput. Appl., 30(8), 2459-69. https://doi.org/10.1007/s00521-016-2807-5.
- Asteris, P.G., Mamou, A., Hajihassani, M., Hasanipanah, M., Koopialipoor, M., Le, T.T. and Armaghani, D.J. (2021), "Soft computing based closed form equations correlating L and N-type Schmidt hammer rebound numbers of rocks", Transportation Geotech., 29, 100588. https://doi.org/10.1016/j.trgeo.2021.100588.
- Ben-Hur, A. and Weston, J. (2010), "A user's guide to support vector machines. InData mining techniques for the life sciences", Humana Press.
- Brady, B.H. and Brown, E.T. (2004), "Rock Mechanics for underground mining", Kluwer Academic Publishers. Dordrecht.
- Chen, G., Jia, Z. and Ke, J. (1997), "Probabilistic analysis of underground excavation stability", Int. J. Rock Mech. Min. Sci., 34(3-4):51-e1. https://doi.org/10.1016/S1365-1609(97)00167-6.
- Chen, L., Zhou, Z., Zang, C., Zeng, L. and Zhao, Y. (2019), "Failure pattern of large-scale goaf collapse and a controlled roof caving method used in gypsum mine", Geomech. Eng., 18(4), 449-457. https://doi.org/10.12989/gae.2019.18.4.449.
- Coates, D.F. (1981), "Caving, subsidence, and ground control. Rock Mechanics Principles", CANMET, Department of Energy, Mines and Resources., Canada.
- Ding, H., Li, G., Dong, X. and Lin, Y. (2018), "Prediction of pillar stability for underground mines using the stochastic gradient boosting technique", IEEE Access, 6, 69253-69264. https://doi.org/10.1109/ACCESS.2018.2880466.
- Ehteram, M., Singh, V.P., Ferdowsi, A., Mousavi, S.F., Farzin, S., Karami, H., Mohd, N.S., Afan, H.A., Lai, S.H., Kisi, O. and Malek, M.A. (2019), "An improved model based on the support vector machine and cuckoo algorithm for simulating reference evapotranspiration", PloS one., 14(5), e0217499. https://doi.org/10.1371/journal.pone.0217499.
- Fang, Z. and Harrison, J.P. (2002), "Numerical analysis of progressive fracture and associated behaviour of mine pillars by use of a local degradation model", Min. Tech., 111(1), 59-72. https://doi.org/10.1179/mnt.2002.111.1.59.
- Federico, F. and Screpanti, S. (2002), "Stability analysis of cavities excavated in roman pyroclastic rocks", In: XXI Convegno Nazionale di Geotecnica Opere geotecniche in ambiente urbano, L'aquila (in italian).
- Ghasemi, E., Ataei, M. and Shahriar, K. (2014), "An intelligent approach to predict pillar sizing in designing room and pillar coal mines", Int. J. Rock Mech. Min. Sci., 65, 86-95. https://doi.org/10.1016/j.ijrmms.2013.11.009
- Gonzalez-Nicieza, C., A lvarez-Fernandez, M.I., Menendez-Diaz, A. and Alvarez-Vigil, A.E. (2014), "A comparative analysis of pillar design methods and its application to marble mines", Rock Mech. Rock Eng., 39(5), 421-44. https://doi.org/10.1007/s00603-005-0078-z.
- Griffiths, D.V., Fenton, G.A. and Lemons, C.B. (2002), "Probabilistic analysis of underground pillar stability", Int. J. Numer. Anal. Method. Geomech., 26(8), 775-91. https://doi.org/10.1002/nag.222.
- Han, J., Pei, J. and Kamber, M. (2011), Data mining: concepts and techniques.
- Hedley, D.G.F. (1972), Stope-and-pillar design for the Elliot Lake Uranium Mines.
- Hinton, G. and Roweis, S. (2002), "Stochastic Neighbor Embedding; Advances in Neural Information Processing Systems", 551 The MIT Press., Cambridge, MA, USA.
- Idris, M.A., Saiang, D. and Nordlund, E. (2011), "Probabilistic analysis of open stope stability using numerical modelling", Int. J. Min. Mineral Eng., 3(3), 194-219. https://doi.org/10.1504/IJMME.2011.043849
- Idris, M.A., Saiang, D. and Nordlund, E. (2015), "Stochastic assessment of pillar stability at Laisvall mine using artificial neural network", Tunn. Undergr. Sp. Tech., 49, 307-319. https://doi.org/10.1016/j.tust.2015.05.003.
- Jian, Z.H., Li, X.B., Shi, X.Z., Wei, W.E. and Wu, B.B. (2011), "Predicting pillar stability for underground mine using Fisher discriminant analysis and SVM methods", T. Nonferrous Metals Soc. China., 21(12), 2734-2743. https://doi.org/10.1016/S1003-6326(11)61117-5.
- Joyce, M. (2011), "Kullback-leibler divergence. In International Encyclopedia of Statistical Science", Berlin/Heidelberg, Germany.
- Kamran, M. and Shahani, N.M. (2022), "Decision support system for the prediction of mine fire levels in underground coal mining using machine learning approaches", Min. Metallurgy Exploration, 39, 591-601. https://doi.org/10.1007/s42461-022-00569-1
- Leake, M.R., Conrad, W.J., Westman, E.C., Afrouz, S.G. and Molka, R.J. (2017), "Microseismic monitoring and analysis of induced seismicity source mechanisms in a retreating room and pillar coal mine in the Eastern United States", Undergr. Sp., 2(2), 115-124. https://doi.org/10.1016/j.undsp.2017.05.002.
- Li, C., Zhou, J., Armaghani, D.J., Cao, W. and Yagiz, S. (2021), "Stochastic assessment of hard rock pillar stability based on the geological strength index system", Geomech. Geophys. GeoEnergy Geo-Resour., 7(2), 1-24. https://doi.org/10.1007/s40948-021-00243-8.
- Li, C., Zhou, J., Armaghani, D.J. and Li, X. (2021), "Stability analysis of underground mine hard rock pillars via combination of finite difference methods, neural networks, and Monte Carlo simulation techniques", Undergr. Sp., 6(4), 379-395. https://doi.org/10.1016/j.undsp.2020.05.005.
- Li, N., Zare, M., Yi, C. and Jimenez, R. (2022). "Stability risk assessment of underground rock pillars using logistic model trees", Int. J. Environ. Res. Health, 19(4), 2136. https://doi.org/10.3390/ijerph19042136.
- Liang, W., Luo, S., Zhao, G. and Wu, H. (2020), "Predicting hard rock pillar stability using GBDT, XGBoost, and LightGBM algorithms", Mathematics., 8(5), 765. https://doi.org/10.3390/math8050765.
- Lilly, P.A. and Li, J. (2000), "Estimating excavation reliability from displacement modelling", Int. J. Rock Mech. Min Sci., 37(8), 1261-1265. https://doi.org/10.1016/S1365-1609(00)00053-8
- Liu, H., Li, X., Gao, X., Long, K. and Chen, P. (2021), "Research on no coal pillar protection technology in a double lane with pre-set isolation wall", Geomech. Eng., 27(6), 537-550. https://doi.org/10.12989/gae.2021.27.6.537.
- Liu, H., Yang, J., Ye, M., James, S.C., Tang, Z., Dong, J. and Xing, T. (2021), "Using t-distributed Stochastic Neighbor Embedding (t-SNE) for cluster analysis and spatial zone delineation of groundwater geochemistry data", J. Hydrology., 1, 597. 126146. https://doi.org/10.1016/j.jhydrol.2021.126146.
- Lunder, P.J. and Pakalnis, R.C. (1997), "Determination of the strength of hard-rock mine pillars", CIM bulletin., 51-55.
- Martin, C.D. and Maybee, W.G. (2000), "The strength of hard-rock pillars", Int. J. Rock Mech. Min. Sci.., 37(8), 1239-46. https://doi.org/10.1016/S1365-1609(00)00032-0.
- Mohan, G.M., Sheorey, P.R. and Kushwaha, A. (2001), "Numerical estimation of pillar strength in coal mines", Int. J. Rock Mech. Min. Sci., 38(8), 1185-1192. https://doi.org/10.1016/S1365-1609(01)00071-5.
- Monjezi, M., Hesami, S.M. and Khandelwal, M. (2011), "Superiority of neural networks for pillar stress prediction in bord and pillar method", Arabian J. Geosci., 4(5-6), 845-853. https://doi.org/10.1007/s12517-009-0101-x.
- Obert, L. and Duvall, W.I. (1967), "Rock mechanics and the design of structures in rock", New York: Wiley.
- Park, D., Kim, H.M., Ryu, D.W., Song, W.K. and Sunwoo, C. (1997), "Application of a point estimate method to the probabilistic limit-state design of underground structures", Int. J. Rock Mech. Min. Sci., 51, 97-104. https://doi.org/10.1016/j.ijrmms.2012.01.014.
- Parsajoo, M., Armaghani, D.J., Mohammed, A.S., Khari, M., and Jahandari, S. (2021), "Tensile strength prediction of rock material using non-destructive tests: A comparative intelligent study", Transportation Geotech., 31, 100652. https://doi.org/10.1016/j.trgeo.2021.100652.
- Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V. and Vanderplas, J. (2011), "Scikit-learn: Machine learning in Python", J. Machine Learn. Res., 12, 2825-2830.
- Potvin, Y. (1989), "Design guidelines for open stope support", CIM bulletin., 82(926), 53-62.
- Prassetyo, S.H., Irnawan, M.A., Simangunsong, G.M., Wattimena, R.K., Arif, I., Rai, M.A. (2019), "New coal pillar strength formulae considering the effect of interface friction", Int. J. Rock Mech. Min. Sci., 123, 104102. https://doi.org/10.1016/j.ijrmms.2019.104102.
- Qin, S., Jiao, J.J., Tang, C.A. and Li, Z. (2006), "Instability leading to coal bumps and nonlinear evolutionary mechanisms for a coal-pillar-and-roof system", Int. J. Solids Struct., 43(25-26), 7407-7423. https://doi.org/10.1016/j.ijsolstr.2005.06.087.
- Qiu, P., Wang, J., Ning, J., Liu, X., Hu, S. and Gu, Q. (2019). "Rock burst criteria of deep residual coal pillars in an underground coal mine: a case study", Geomech. Eng., 19(6), 499-511. https://doi.org/10.12989/gae.2019.19.6.499.
- Rastiello, G., Federico, F. and Screpanti, S. (2015), "New soft rock pillar strength formula derived through parametric FEA using a critical state plasticity model", Rock Mech. Rock Eng., 48(5), 2077-2091. https://doi.org/10.1007/s00603-014-0693-7.
- Recio-Gordo, D. and Jimenez, R. (1997), "A probabilistic extension to the empirical ALPS and ARMPS systems for coal pillar design", Int. J. Rock Mech. Min. Sci., 52, 181-187. https://doi.org/10.1016/j.ijrmms.2012.03.009.
- Salamon, M.D.G. and Munro, A. (1967), "A study of the strength of coal pillars", J. Southern African Inst. Min. Metallurgy., 68(2), 55-67. https://hdl.handle.net/10520/AJA0038223X_3918.
- Santos, C.F., Bieniawski, Z.T. (1989), "Floor design in underground coal mines", Rock Mech. Rock Eng., 22(4), 249-271. https://doi.org/10.1007/BF01262282.
- Sarfarazi, V., Abharian, S. and Ghorbani, A. "Physical test and PFC modelling of rock pillar failure containing two neighboring joints and one hole", Smart Struct. Syst., 27(1), 123-137. https://doi.org/10.12989/sss.2021.27.1.123.
- Sheorey, P.R. (1993), "Design of coal pillar arrays and chain pillars", Anal. Des. Method., 631-670. https://doi.org/10.1016/B978-0-08-040615-2.50030-7.
- Sheorey, P.R., Das, M.N., Bordia, S.K. and Singh, B. (1986), "Pillar strength approaches based on a new failure criterion for coal seams", Int. J. Min. Geol. Eng., 4(4), 273-290. https://doi.org/10.1007/BF01552957.
- Ullah, B., Kamran, M. and Rui, Y. (2022), "Predictive Modeling of Short-Term Rockburst for the Stability of Subsurface Structures Using Machine Learning Approaches: t-SNE, K-Means Clustering and XGBoost", Mathematics, 10(3), 449. https://doi.org/10.3390/math10030449
- Van, M.L. and Hinton, G. (2008), "Visualizing data using t-SNE", J. Machine Learn. Res., 9(11).
- Ventura, R. and Berjaga, X. (2015), "Comparison of multivariate analysis techniques in plastic injection moulding process", Proceedings of the 2015 IEEE 20th Conference on Emerging Technologies & Factory Automation (ETFA), 1-6.
- Wattimena, R.K., Kramadibrata, S., Sidi, I.D. and Azizi, M.A. (2013), "Developing coal pillar stability chart using logistic regression", Int. J. Rock Mech. Min. Sci., 58, 55-60. https://doi.org/10.1016/j.ijrmms.2012.09.004.
- Wu, J. (2012), "Advances in K-means clustering: a data mining thinking", Springer Science & Business Media, Jul 9.
- Wu, X., Kumar, V., Quinlan, J.R., Ghosh, J., Yang, Q., Motoda, H. and Steinberg, D. (2008), "Top 10 algorithms in data mining", Knowledge and information systems", 14(1), 1-37. https://doi.org/10.1007/s10115-007-0114-2.
- Zhao, S., Sui, Q., Cao, C., Wang, X., Wang, C., Zhao, D. and Zhao, Y. (2021), "Mechanical model of lateral fracture for the overlying hard rock strata along coal mine goaf", Geomech. Eng., 27(1), 75-85. https://doi.org/10.12989/gae.2021.27.1.075.
- Zhao, Y., Gong, S., Zhang, C., Zhang, Z. and Jiang, Y. (2018), "Fractal characteristics of crack propagation in coal under impact loading", Fractals., 26(02)1840014. https://doi.org/10.3390/w11061231.
- Zhou, J., Li, X. and Mitri, H.S. (2015), "Comparative performance of six supervised learning methods for the development of models of hard rock pillar stability prediction", Nat. Hazards., 79(1), 291-316. https://doi.org/10.1007/s11069-015-1842-3.
- Zhou, J., Zhu, S., Qiu, Y., Armaghani, D. J., Zhou, A. and Yong, W. (2022), "Predicting tunnel squeezing using support vector machine optimized by whale optimization algorithm", Acta Geotechnica, 17(4), 1343-1366. https://doi.org/10.1007/s11440-022-01450-7.