Acknowledgement
The work described in this paper was funded by grants from the National Natural Science Foundation of China (Project No. 41902291), the Natural Science Foundation of Hunan Province, China (Project No. 2020JJ5704), and the Open Research Fund Program of Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring (Central South University), Ministry of Education (Project No. 2020YSJS21), and the Fundamental Research Funds for Central Universities of the Central South University (Project No. 2021zzts0268). The financial support is greatly acknowledged.
References
- Au, S.K., Cao, Z.J. and Wang, Y. (2010), "Implementing advanced Monte Carlo simulation under spreadsheet environment", Struct. Saf., 32(5), 281-292. https://doi.org/10.1016/j.strusafe.2010.03.004.
- Bai, T., Yang, H., Chen, S. and Zhang, S. (2020), "In-situ monitoring and reliability analysis of an embankment slope with soil variability", Geomech. Eng., 23(3), 261-273. https://doi.org/10.12989/gae.2020.23.3.261.
- Ching, J. and Phoon, K.K. (2019), "Impact of autocorrelation function model on the probability of failure", J. Eng. Mech., 145, 04018123. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001549.
- Ching, J., Phoon, K.K., Stuedlein, A.W. and Jaksa, M. (2019), "Identification of sample path smoothness in soil spatial variability", Struct. Saf., 81, 101870. https://doi.org/10.1016/j.strusafe.2019.101870.
- Cho, S.E. (2007), "Effects of spatial variability of soil properties on slope stability", Eng. Geol., 92(3-4), 97-109. https://doi.org/10.1016/j.enggeo.2007.03.006.
- Cho, S.E. (2010), "Probabilistic assessment of slope stability that considers the spatial variability of soil properties", J. Geotech. Geoenviron. Eng., 136(7), 975-984. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000309.
- Cressie, N. (1990), "The origins of kriging", Math. Geol., 22(3), 239-252. https://doi.org/10.1007/BF00889887.
- Duncan James, M. (1996), "State of the art: Limit equilibrium and finite-element analysis of slopes", J. Geotech. Eng., 122(7), 577-596. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:7(577).
- El Haj, A.K. and Soubra, A.H. (2020), "Efficient estimation of the failure probability of a monopile foundation using a Kriging-based approach with multi-point enrichment", Comput. Geotech., 121(121), 103451. https://doi.org/10.1016/j.compgeo.2020.103451.
- Gaspar, B., Teixeira, A.P. and Soares, C.G. (2014), "Assessment of the efficiency of Kriging surrogate models for structural reliability analysis", Probab. Eng. Mech., 37, 24-34. https://doi.org/10.1016/j.probengmech.2014.03.011.
- Gneiting, T., Kleiber, W. and Schlather, M. (2010), "Matern cross-covariance functions for multivariate random fields", J. Am. Stat. Assoc., 105(491), 1167-1177. https://doi.org/10.1198/jasa.2010.tm09420.
- Gomes, H.M., Awruch, A.M. and Lopes, P.A.M. (2011), "Reliability based optimization of laminated composite structures using genetic algorithms and artificial neural networks", Struct. Saf., 33(3), 186-195. https://doi.org/10.1016/j.strusafe.2011.03.001.
- Ji, J. and Low, B.K. (2012), "Stratified response surfaces for system probabilistic evaluation of slopes", J. Geotech. Geoenviron. Eng., 138(11), 1398-1406. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000711.
- Jiang, S.H., Li, D.Q., Cao, Z.J., Zhou, C.B. and Phoon, K.K. (2015), "Efficient system reliability analysis of slope stability in spatially variable soils using Monte Carlo simulation", J. Geotech. Geoenviron. Eng., 141(2), 04014096. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001227.
- Kang, F., Han, S., Salgado, R. and Li, J. (2015), "System probabilistic stability analysis of soil slopes using Gaussian process regression with Latin hypercube sampling", Comput. Geotech., 63, 13-25. https://doi.org/10.1016/j.compgeo.2014.08.010.
- Kavzoglu, T., Kutlug Sahin, E. and Colkesen, I. (2015), "Selecting optimal conditioning factors in shallow translational landslide susceptibility mapping using genetic algorithm", Eng. Geol., 192, 101-112. https://doi.org/10.1016/j.enggeo.2015.04.004.
- Kleijnen, J.P.C. (2009), "Kriging metamodeling in simulation: A review", Eur. J. Operational Res., 192(3), 707-716. https://doi.org/10.1016/j.ejor.2007.10.013.
- Li, D.Q., Qi, X.H., Phoon, K.K., Zhang, L.M. and Zhou, C.B. (2014), "Effect of spatially variable shear strength parameters with linearly increasing mean trend on reliability of infinite slopes", Struct. Saf., 49, 45-55. https://doi.org/10.1016/j.strusafe.2013.08.005.
- Li, D.Q., Jiang, S.H., Cao, Z.J., Zhou, W. and Zhou, C.B. (2015), "A multiple response-surface method for slope reliability analysis considering spatial variability of soil properties", Eng. Geol., 187, 60-72. https://doi.org/10.1016/j.enggeo.2014.12.003
- Li, D.Q., Zheng, D., Cao, Z.J. Tang, X.S. and Phoon, K.K. (2016), "Response surface methods for slope reliability analysis: Review and comparison", Eng. Geol., 203, 3-14. https://doi.org/10.1016/j.enggeo.2015.09.003.
- Liu, L.L. and Cheng, Y.M. (2016), "Efficient system reliability analysis of soil slopes using multivariate adaptive regression splines-based Monte Carlo simulation", Comput. Geotech., 79, 41-54. https://doi.org/10.1016/j.compgeo.2016.05.001.
- Liu, L.L. and Cheng, Y.M. (2018), "System reliability analysis of soil slopes using an advanced kriging metamodel and quasi-Monte Carlo simulation", Int. J. Geomech., 18(8), 06018019. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001209.
- Liu, L., Cheng, Y. and Wang, X. (2017), "Genetic algorithm optimized Taylor Kriging surrogate model for system reliability analysis of soil slopes", Landslides, 14(2), 535-546. https://doi.org/10.1007/s10346-016-0736-0.
- Liu, X., Li, D.Q. Cao, Z.J. and Wang, Y. (2020), "Adaptive Monte Carlo simulation method for system reliability analysis of slope stability based on limit equilibrium methods", Eng. Geol., 264, 105384. https://doi.org/10.1016/j.enggeo.2019.105384/
- Lophaven, S., Nielsen, H. and Sndergaard, J. (2002), DACE - A MATLAB Kriging Toolbox.
- Luo, X., Li, X., Zhou, J. and Cheng, T. (2012), "A Kriging-based hybrid optimization algorithm for slope reliability analysis", Struct. Saf., 34(1), 401-406. https://doi.org/10.1016/j.strusafe.2011.09.004.
- Marchant, B.P. and Lark, R.M. (2007), "The Matern variogram model: Implications for uncertainty propagation and sampling in geostatistical surveys", Geoderma, 140(4), 337-345. https://doi.org/10.1016/j.geoderma.2007.04.016.
- Minasny, B. and McBratney, A.B. (2005), "The Matern function as a general model for soil variograms", Geoderma, 128(3-4), 192-207. https://doi.org/10.1016/j.geoderma.2005.04.003.
- Oliver, M.A. and Webster, R. (1990), "Kriging: a method of interpolation for geographical information systems", Int. J. Geograph. Inform. Syst., 4(3), 313-332. https://doi.org/10.1080/02693799008941549.
- Phoon, K.K. (2017), "Role of reliability calculations in geotechnical design", Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 11(1), 4-21. https://doi.org/10.1080/17499518.2016.1265653.
- Qi, X.H. and Li, D.Q. (2018), "Effect of spatial variability of shear strength parameters on critical slip surfaces of slopes", Eng. Geol., 239, 41-49. https://doi.org/10.1016/j.enggeo.2018.03.007.
- Qi, X.H. and Liu, H.X. (2019a), "Estimation of autocorrelation distances for in-situ geotechnical properties using limited data", Struct. Saf., 79, 26-38. https://doi.org/10.1016/j.strusafe.2019.02.003.
- Qi, X.H. and Liu, H.X. (2019b), "An improved global zonation method for geotechnical parameters", Eng. Geol., 248, 185-196. https://doi.org/10.1016/j.enggeo.2018.11.013.
- Satria Palar, P., Rizki Zuhal, L. and Shimoyama, K. (2020), "Gaussian process surrogate model with composite kernel learning for engineering design", AIAA J., 58(4), 1864-1880. https://doi.org/10.2514/1.J058807.
- Silvestrini, R.T., Montgomery, D.C. and Jones, B. (2013), "Comparing computer experiments for the Gaussian process model using integrated prediction variance", Quality Eng., 25(2), 164-174. https://doi.org/10.1080/08982112.2012.758284.
- Suchomel, R. and Masin, D. (2010), "Comparison of different probabilistic methods for predicting stability of a slope in spatially variable c-φ soil", Comput. Geotech., 37(1-2), 132-140. https://doi.org/10.1016/j.compgeo.2009.08.005.
- Tabarroki, M., Ahmad, F., Banaki, R., Jha, S.K. and Ching, J. (2013), "Determining the factors of safety of spatially variable slopes modeled by random fields", J. Geotech. Geoenviron. Eng., 139(12), 2082-2095. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000955.
- Wang, L., et al. (2020), "Probabilistic stability analysis of earth dam slope under transient seepage using multivariate adaptive regression splines", Bull. Eng. Geol. Environ., 79(6), 2763-2775. https://doi.org/10.1007/s10064-020-01730-0.
- Wang, Y., Cao, Z. and Au, S.K. (2010), "Efficient Monte Carlo simulation of parameter sensitivity in probabilistic slope stability analysis", Comput. Geotech., 37(7-8), 1015-1022. https://doi.org/10.1016/j.compgeo.2010.08.010.
- Yi, P., Wei, K., Kong, X. and Zhu, Z. (2015), "Cumulative PSO-Kriging model for slope reliability analysis", Probab. Eng. Mech., 39, 39-45. https://doi.org/10.1016/j.probengmech.2014.12.001.
- Zhang, J., Huang, H. and Phoon, K.K. (2013), "Application of the Kriging-based response surface method to the system reliability of soil slopes", J. Geotech. Geoenviron. Eng., 139(4), 651-655. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000801.
- Zhang, J., Zhang, L. and Tang, W. (2011), "Kriging numerical models for geotechnical reliability analysis", Soils Found., 51(6), 1169-1177. https://doi.org/10.3208/sandf.51.1169.
- Zhang, S., Li, Y., Li, J. and Liu, L. (2020), "Reliability analysis of layered soil slopes considering different spatial autocorrelation structures", Appl. Sci., 10(11), 4029. https://doi.org/10.3390/app10114029.