DOI QR코드

DOI QR Code

Seismic bearing capacity of shallow embedded strip footing on rock slopes

  • Das, Shuvankar (Department of Civil Engineering, Indian Institute of Technology Kharagpur) ;
  • Halder, Koushik (Department of Civil Engineering, Indian Institute of Technology Kharagpur) ;
  • Chakraborty, Debarghya (Department of Civil Engineering, Indian Institute of Technology Kharagpur)
  • Received : 2021.08.10
  • Accepted : 2022.06.07
  • Published : 2022.07.25

Abstract

Present study computes the ultimate bearing capacity of an embedded strip footing situated on the rock slope subjected to seismic loading. Influences of embedment depth of strip footing, horizontal seismic acceleration coefficient, rock slope angle, Geological Strength Index, normalized uniaxial compressive strength of rock mass, disturbance factor, and Hoek-Brown material constant are studied in detail. To perform the analysis, the lower bound finite element limit analysis method in combination with the semidefinite programming is utilized. From the results of the present study, it can be found that the magnitude of the bearing capacity factor reduces quite substantially with an increment in the seismic loading. In addition, with the increment in slope angle, further reduction in the value of the bearing capacity factor is observed. On the other hand, with an increment in the embedment depth, an increment in the value of the bearing capacity factor is found. Stress contours are presented to describe the combined failure mechanism of the footing-rock slope system in the presence of static as well as seismic loadings for the different embedment depths.

Keywords

References

  1. Alencar, A.S., Galindo, R.A. and Melentijevic, S. (2019), "Bearing capacity of foundation on rock mass depending on footing shape and interface roughness", Geomech. Eng., 18(4), 391-406. https://doi.org/10.12989/gae.2019.18.4.391.
  2. Alencar, A.S., Galindo, R.A. and Melentijevic, S. (2020), "Bearing capacity of shallow foundations on the bilayer rock", Geomech. Eng., 21(1), 11-21. https://doi.org/10.12989/gae.2020.21.1.011.
  3. Ausilio, E. and Zimmaro, P. (2015), "Displacement-based seismic design of a shallow strip footing positioned near the edge of a rock slope", Int. J. Rock Mech. Min. Sci., 76, 68-77. https://doi.org/10.1016/j.ijrmms.2015.02.010.
  4. Azzouz, A.S. and Baligh, M.M. (1983), "Loaded areas on cohesive slopes", J. Geotech. Eng., 109(5), 724-729. https://doi.org/10.1061/(ASCE)0733-9410(1983)109:5(724).
  5. Baker, R., Shukha, R., Operstein, V. and Frydman, S. (2006), "Stability charts for pseudo-static slope stability analysis", Soil Dyn. Earthq. Eng., 26(9), 813-823. https://doi.org/10.1016/j.soildyn.2006.01.023.
  6. Budhu, M. and Al-Karni, A. (1993), "Seismic bearing capacity of soils", Geotechnique, 43(1), 181-187. https://doi.org/10.1680/geot.1993.43.1.181.
  7. Casablanca, O., Biondi, G., Cascone, E. and Filippo, G.D. (2021), "Static and seismic bearing capacity of shallow strip foundations on slopes", Geotechnique, 1-15. https://doi.org/10.1680/jgeot.20.P.044.
  8. Castelli, F. and Lentini, V. (2012), "Evaluation of the bearing capacity of footings on slopes", Int. J. Phy. Model. Geotech., 12(3), 112-118. https://doi.org/10.1680/ijpmg.11.00015.
  9. Chakraborty, D. and Kumar, J. (2015), "Seismic bearing capacity of shallow embedded foundations on a sloping ground surface", Int. J. Geomech., 15(1), 04014035. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000403.
  10. Georgiadis, K. (2010), "Undrained bearing capacity of strip footings on slopes", J. Geotech. Geoenviron Eng., 136(5), 677-685. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000269.
  11. Halder, K. and Chakraborty, D. (2020), "Probabilistic bearing capacity of strip footing on reinforced anisotropic soil slope", Geomech. Eng., 23(1), 15-30. https://doi.org/10.12989/gae.2020.23.1.015.
  12. Hoek, E., Carranza-Torres, C. and Corkum, B. (2002), "Hoek-Brown failure criterion-2002", Proceedings of NARMSTac., 1(1), 267-273.
  13. Hynes-Griffin, M.E. and Franklin, A.G. (1984), "Rationalizing the seismic coefficient method", Miscellaneous Paper GL-84-13, U.S. Army Corps. Eng. Vicksburg Miss.
  14. Karray, M., Hussien, M.N., Delisle, M.C. and Ledoux, C. (2018), "Framework to assess pseudo-static approach for seismic stability of clayey slopes", Can. Geotech. J., 55(12), 1860-1876. https://doi.org/10.1139/cgj-2017-0383.
  15. Keshavarz, A., Fazeli, A. and Sadeghi, S. (2016), "Seismic bearing capacity of strip footings on rock masses using the Hoek-Brown failure criterion", J. Rock Mech. Geotech. Eng., 8(2), 170-177. https://doi.org/10.1016/j.jrmge.2015.10.003.
  16. Keskin, M.S. and Laman, M. (2014), "Experimental study of bearing capacity of strip footing on sand slope reinforced with tire chips", Geomech. Eng., 6(3), 249-262. https://doi.org/10.12989/gae.2014.6.3.249.
  17. Krabbenhoft, K., Lyamin, A.V. and Sloan, S.W. (2008), "Three-dimensional Mohr-Coulomb limit analysis using semidefinite programming", Commun. Num. Meth. Eng., 24(11), 1107-1119. https://doi.org/10.1002/cnm.1018.
  18. Kramer, S.L. (1996), Geotechnical earthquake engineering, Prentice Hall, New Jersey
  19. Kumar, J. and Ghosh, P. (2006), "Seismic bearing capacity for embedded footings on sloping ground", Geotechnique, 56(2), 133-140. https://doi.org/10.1680/geot.2006.56.2.133.
  20. Kumar, J. and Mohan Rao, V.B.K. (2003), "Discussion-Seismic bearing capacity factors for spread foundation", Geotechnique, 53(4), 445-446. https://doi.org/10.1680/geot.2003.53.4.445.
  21. Kumar, J. and Mohapatra, D. (2017), "Lower-bound finite elements limit analysis for Hoek-Brown materials using semidefinite programming", J. Eng. Mech., 143(9), 04017077. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001296.
  22. Kumar, J. and Rahaman, O. (2020), "Lower bound limit analysis using power cone programming for solving stability problems in rock mechanics for generalized Hoek-Brown criterion", Rock Mech. Rock Eng., 53(7), 3237-3252. https://doi.org/10.1007/s00603-020-02099-y.
  23. Lyamin, A.V., Yu, H.S., Sloan, S.W. and Hossain, M.Z. (1998), "Lower bound limit analysis for jointed rocks using the Hoek-Brown yield criterion", Aus. Geomech. J., 33(1), 46-62.
  24. Lysmer, J. (1970), "Limit analysis of plane problems in soil mechanics", J. Soil Mech. Found. Div., 96(4), 1311-1334. https://doi.org/10.1061/JSFEAQ.0001441
  25. Maghous, S., Saada, Z., Garnier, D. and Dutra, V.F.P. (2020), "Upper bound kinematic approach to seismic bearing capacity of strip foundations resting near rock slopes", Eur. J. Environ. Civ. Eng., 1-24. https://doi.org/10.1080/19648189.2020.1830179.
  26. Marcuson, W.F. (1981), "Moderator's report for session on Earth Dams and Stability of Slopes under Dynamic Loads", Proceedings of the Int. Conf. Recent Adv. Geotech. Earthq. Eng. Soil Dyn., 3, 1175.
  27. MATLAB R2015a (2015), [Computer software]. Natick, MA, MathWorks.
  28. Merifield, R.S., Lyamin, A.V. and Sloan, S.W. (2006), "Limit analysis solutions for the bearing capacity of rock masses using the generalized Hoek-Brown criterion", Int. J. Rock Mech. Min. Sci., 43(6), 920-937. https://doi.org/10.1016/j.ijrmms.2006.02.001.
  29. Meyerhof, G.G. (1963), "Some recent research on the bearing capacity of foundations", Can. Geotech. J., 1(1), 16-26. https://doi.org/10.1139/t63-003.
  30. MOSEK ApS, version 9.0 [Computer software]. MOSEK, Copenhagen, Denmark.
  31. Rahaman, O. and Kumar, J. (2020), "Stability analysis of twin horse-shoe shaped tunnels in rock mass", Tunn. Undergr. Sp. Tech., 98, 103354. https://doi.org/10.1016/j.tust.2020.103354.
  32. Saada, Z., Maghous, S. and Garnier, D. (2011), "Seismic bearing capacity of shallow foundations near rock slopes using the generalized Hoek-Brown criterion", Int. J. Numer. Anal. Meth. Geomech., 35(6), 724-748. https://doi.org/10.1002/nag.929.
  33. Sarma, S.K. and Iossifelis, I.S. (1990), "Seismic bearing capacity factors of shallow strip footings", Geotechnique, 40(2), 265-273. https://doi.org/10.1680/geot.1990.40.2.265.
  34. Seed, H.B. (1979), "Considerations in the earthquake-resistant design of earth and rockfill dams", Geotechnique, 29(3), 215-263. https://doi.org/10.1680/geot.1979.29.3.215.
  35. Shields, D., Chandler, N. and Garnier, J. (1990), "Bearing capacity of foundations in slopes." J. Geotech. Eng., 116(3), 528-537. https://doi.org/10.1061/(ASCE)0733-9410(1990)116:3(528).
  36. Shukla, R.P. and Jakka, R.S. (2018), "Critical setback distance for a footing resting on slopes under seismic loading", Geomech. Eng., 15(6), 1193-1205. https://doi.org/10.12989/gae.2018.15.6.1193.
  37. Sloan, S.W. (1988), "Lower bound limit analysis using finite elements and linear programming", Int. J. Num. Anal. Meth. Geomech., 12(1), 61-67. https://doi.org/10.1002/nag.1610120105.
  38. Terzaghi, K. (1950), Mechanisms of landslides, Engineering Geology (Berkey) Volume, Geol. Soc. Am.
  39. Ukritchon, B. and Keawsawasvong, S. (2019a), "Lower bound stability analysis of plane strain headings in Hoek-Brown rock masses", Tunn. Undergr. Sp. Tech., 84, 99-112. https://doi.org/10.1016/j.tust.2018.11.002.
  40. Ukritchon, B. and Keawsawasvong, S., (2019b), "Stability of unlined square tunnels in Hoek-Brown rock masses based on lower bound analysis", Comput. Geotech., 105, 249-264. https://doi.org/10.1016/j.compgeo.2018.10.006.
  41. Wu, G., Zhao, M. and Zhao, H. (2021), "Undrained seismic bearing capacity of strip footings horizontally embedded in two-layered slopes", Earthq. Spectra., 37(2), 637-651. https://doi.org/10.1177/8755293020957332.
  42. Xiao, Y., Zhao, M., Zhang, R., Zhao, H. and Wu, G. (2019), "Stability of dual square tunnels in rock masses subjected to surcharge loading", Tunn. Undergr. Sp. Tech., 92, 103037. https://doi.org/10.1016/j.tust.2019.103037.
  43. Yang, S., Leshchinsky, B., Cui, K., Zhang, F. and Gao, Y. (2021), "Influence of failure mechanism on seismic bearing capacity factors for shallow foundations near slopes." Geotechnique, 1-14. https://doi.org/10.1680/jgeot.19.P.329.
  44. Yang, X., Yin, J.H. and Li, L. (2003), "Influence of a non-linear failure criterion on the bearing capacity of a strip footing resting on rock mass using a lower bound approach", Can. Geotech. J., 40(3), 702-707. https://doi.org/10.1139/t03-010.
  45. Yang, X.L. (2009), "Seismic bearing capacity of a strip footing on rock slopes", Can. Geotech. J., 46(8), 943-954. https://doi.org/10.1139/T09-038.
  46. Zhang, R., Xiao, Y., Zhao, M. and Zhao, H. (2019), "Stability of dual circular tunnels in a rock mass subjected to surcharge loading", Comput. Geotech., 108, 257-268. https://doi.org/10.1016/j.compgeo.2019.01.004