DOI QR코드

DOI QR Code

Hair Revitalization Effects of Streptococcus sp. Strain Culture Medium Filtrate (HAIRCLETM)

Streptococcus sp. 배양 여과물(HAIRCLETM)의 모발 개선 효과

  • Park, Hye Rim (Life Science R&D Center, HYUNDAI BIOLAND Co., Ltd.) ;
  • Kim, Ha Yeon (Life Science R&D Center, HYUNDAI BIOLAND Co., Ltd.) ;
  • Kim, Jin Young (Life Science R&D Center, HYUNDAI BIOLAND Co., Ltd.) ;
  • Oh, Sinseok (Department of Polymer Science & Engineering, Korea National University of Transportation) ;
  • Kang, Pilsun (Department of Polymer Science & Engineering, Korea National University of Transportation) ;
  • Lee, Gang Hyuk (Life Science R&D Center, HYUNDAI BIOLAND Co., Ltd.) ;
  • Lim, Jung-Hyurk (Department of Polymer Science & Engineering, Korea National University of Transportation) ;
  • Shin, Song Seok (Life Science R&D Center, HYUNDAI BIOLAND Co., Ltd.)
  • 박혜림 (현대바이오랜드 생명과학연구소) ;
  • 김하연 (현대바이오랜드 생명과학연구소) ;
  • 김진영 (현대바이오랜드 생명과학연구소) ;
  • 오신석 (한국교통대학교 응용화학에너지공학부) ;
  • 강필선 (한국교통대학교 응용화학에너지공학부) ;
  • 이강혁 (현대바이오랜드 생명과학연구소) ;
  • 임정혁 (한국교통대학교 응용화학에너지공학부) ;
  • 신송석 (현대바이오랜드 생명과학연구소)
  • Received : 2022.06.28
  • Accepted : 2022.06.30
  • Published : 2022.06.30

Abstract

Streptococcus sp. is generally known as a strain that produces hyaluronic acid. In this study, we focused on ingredients other than hyaluronic acid among several metabolites produced by Streptococcus sp. during cultivation. The hair experimental sample (HAIRCLETM) was prepared with Streptococcus sp. culture filtrate under the condition that hyaluronic acid was not produced and the effect on the hair was identified. Tensile strength of hair was tested with a universal testing machine (UTM). Surface properties of a hair were examined with an atomic force microscope (AFM). Our results suggest that HAIRCLETM could prevent damage to a hair such as destroyed-cuticle, increased-faction force, and broken-hair. Furthermore, hair-related experiments confirmed that HAIRCLETM could promote the expression of hair growth factors VEGF, HGF, and Wnt10b and mitigate male hair loss by inhibiting androgen receptors and TGF-β2 expression. In addition, it was confirmed that the expression of barrier-related factors (INV, CLDN-1) was increased for oxidative stress, and the COX-2 expression, an inflammatory factor, was inhibited, thereby improving damaged scalp barriers and alleviating induced inflammation.

Streptococcus sp.는 일반적으로 히알루론산을 생산하는 균주로 알려져 있다. 본 연구에서는 Streptococcus 균주가 배양하면서 만들어내는 여러 대사산물 중 히알루론산 이외의 영양성분에 주목하였다. 히알루론산이 생성되지 않은 조건에서의 Streptococcus sp. 배양 여과물로 모발 실험용 샘플(HAIRCLETM)을 제조하고 모발에 미치는 효과를 확인하였다. 모발의 인장강도는 만능시험기(universal testing machine, UTM)로 측정하였으며, 모발표면의 미세구조는 atomic force microscope (AFM)으로 분석하였다. 이 연구를 통해 Streptococcus sp. 배양 여과물은 손상된 모표피개선, 마찰력증가 및 모발강도의 증가 등의 모발개선 효과가 있는 것으로 확인되었다. 또한 in vitro 모발관련 실험을 통해 Streptococcus sp. 배양 여과물이 모발성장인자인 혈관내피세포 성장인자(vascular endothelial growth factor, VEGF), 간세포성장인자(hepatocyte growth factor, HGF), Wnt10b의 발현 촉진 효과가 있음을 확인 하였으며, 안드로젠 수용체(androgen receptor, AR)와 TGF-β2 발현을 저해시켜 남성형 탈모완화 효과도 있음을 확인 하였다. 또한 산화스트레스에 대해 장벽 관련 인자(INV, CLDN-1)의 발현을 증가시키고, 염증성 인자인 COX-2 발현을 억제시킴으로써 손상된 두피 장벽을 개선하고 유도된 염증을 완화시키는 효능이 있음을 확인하였다.

Keywords

References

  1. F. Cheng, Q. Gong, H. Yu, and G. Stephanopoulos, High-titer biosynthesis of hyaluronic acid by recombinant Corynebacterium glutamicum, Biotechnol. J., 11(4), 574 (2016). https://doi.org/10.1002/biot.201500404
  2. S. B. Prasad, G. Jayaraman, and K. B Ramachandran. Hyaluronic acid production is enhanced by the additional co-expression of UDP-glucose pyrophosphorylase in Lactococcus lactis, Appl. Microbiol. Biotechnol., 86(1), 273 (2010). https://doi.org/10.1007/s00253-009-2293-0
  3. N. Izawa, M. Serata, T. Sone, T. Omasa, and H. Ohtake. Hyaluronic acid production by recombinant Streptococcus thermophilus. J. Biosci. Bioeng., 111(6), 665 (2011). https://doi.org/10.1016/j.jbiosc.2011.02.005
  4. Z. Mao, H. D. Shin, and R. Chen. A recombinant E. coli bioprocess for hyaluronan synthesis, Appl. Microbiol. Biotechnol, 84(1), 63 (2009). https://doi.org/10.1007/s00253-009-1963-2
  5. G. E. Rogers, Known and unknown features of hair cuticle structure: A brief review, Cosmetics, 6, 32 (2019). https://doi.org/10.3390/cosmetics6020032
  6. J. A. Swift and J. R. Smith, Microscopical investigations on the epicuticle ofmammalian keratin fibres, Microsc. Microanal., 204(3), 203 (2001).
  7. K. S. Stenn and R. Paus, Controls of hair follicle cycling, Am J Physiol, 81(1), 499 (2001).
  8. S. S. Rho, S. J. Park, S. L. Hwang, M. H. Lee, C. D. Kim, I. H. Lee, S. Y Chang, and M. J. Rang, The hair growth promoting effect of Asiasari radix extract and its molecular regulation, J. Dermatol. Sci., 38(2), 89 (2005). https://doi.org/10.1016/j.jdermsci.2004.12.025
  9. J. M. Wang and J.T. Zhang, Progress in relevant growth factors promoting the growth of hair follicle, Am J Anim Vet Sci, 7(2), 104 (2012). https://doi.org/10.3844/ajavsp.2012.104.111
  10. A. P Laddha and Y. A Kulkarni, VEGF and FGF-2: Promising targets for the treatment of respiratory disorders, Respir Med, 156, 33 (2019). https://doi.org/10.1016/j.rmed.2019.08.003
  11. Y.R Lee, M. Yamazaki, S. Mitsui, R. Tsuboi, and H. Ogawa, Hepatocyte growth factor (HGF) activator expressed in hair follicles is involved in in vitro HGF-dependent hair follicle elongation, J. Dermatol. Sci., 25(2), 156 (2001). https://doi.org/10.1016/s0923-1811(00)00124-9
  12. K. Yano, L. F. Brown, and M. Detmar, Control of hair growth and follicle size by VEGF-mediated angiogenesis, J. Clin. Investig., 107(4), 409 (2001). https://doi.org/10.1172/JCI11317
  13. N. Weger and T. Schlake, IGF-I signalling controls the hair growth cycle and the differentiation of hair shafts, J Invest Dermatol., 125(5), 873 (2005). https://doi.org/10.1111/j.0022-202X.2005.23946.x
  14. H. Y. Su, J. G. Hickford, R. Bickerstaffe, and B. R. Palmer, Insulin-like growth factor 1 and hair growth, Dermatol Online J, 5(2), 1 (1999).
  15. Y. H. Li, K. Zhng, J. X. Ye, X. H. Lian, and T. Yang, Wnt10b promotes growth of hair follicles vi a canonical Wnt signaling pathway, Clin. Exp. Dermatol, 36(5), 534 (2011). https://doi.org/10.1111/j.1365-2230.2011.04019.x
  16. L. Zhou, H. Wang, J. Jing, L. Yu, X. Wu and Z. Lu, Morroniside regulates hair growth and cycle transition via activation of the Wnt/β-catenin signaling pathway. Sci Rep., 8(1), 13785 (2018). https://doi.org/10.1038/s41598-018-32138-2
  17. Y. Ouji, M. Yoshikawa, K. Moriya, M. Nishiofuk, R. Matsuda, and S. Ishizaka, Wnt-10b, uniquely among Wnts, promotes epithelial differentiation and shaft growth, Biochem. Biophys. Res. Commun, 367(2), 299 (2008). https://doi.org/10.1016/j.bbrc.2007.12.091
  18. K. S. Stenn and R. Paus, Controls of hair follicle cycling, Physiol Rev, 81(1), 449 (2001). https://doi.org/10.1152/physrev.2001.81.1.449
  19. R. Paus, S. Muller-Rover, and V. A. Botchkarev, Chronobiology of the hair follicle: hunting the "hair cycle clock", J Investig Dermatol Symp Proc, 4(3), 338 (2004). https://doi.org/10.1038/sj.jidsp.5640241
  20. J. Zhao, N. Harada, and K. Okajima, Dihydrotestosterone inhibits hair growth in mice by inhibiting insulin-like growth factor-I production in dermal papillae, Growth Horm IGF Res, 21(5), 260 (2011). https://doi.org/10.1016/j.ghir.2011.07.003
  21. M. Osada, L. Jardine, R. Misir, T. Andl, S. E. Milla, and M. Pezzano, DKK mediated inhibition of Wnt signaling in postnaltal mice leads to loss of TEC progenitors and thymic degerneration, PLoS ONE, 5(2), e9062 (2010). https://doi.org/10.1371/journal.pone.0009062
  22. T. Hibino and T. Nishiyama, Role of TGF-b2 in the human hair cycle, J. Dermatol. Sci. 35(1), 9 (2004). https://doi.org/10.1016/j.jdermsci.2003.12.003
  23. V. H. Price, Androgenetic alopecia in women, J. Investig. Dermatol. Symp. Proc., 8(1), 24 (2003). https://doi.org/10.1046/j.1523-1747.2003.12168.x
  24. U. C. Izabela, L. K. Malgorzata, and B.D. Grazyna, Assessment of the usefulness of dihydrotestosterone in the diagnostics of patients with androgenetic alopecia, Postepy Dermatol Alergol, 31(4), 207 (2014).
  25. M. H. Kwack, Y. K. Sung, E. J. Chung, S. U. Im, J. S. Ahn, M. K. Kim, and J. C. Kim, Dihydrotestosteroneinducible Dickkopf 1 from balding dermal papilla cells causes apoptosis in follicular keratinocytes, J Invest Dermatol,, 128(2), 262 (2008). https://doi.org/10.1038/sj.jid.5700999
  26. J. A. Swift and J. R. Smith, Atomic force microscopy of human hair, Scanning, 22, 310 (2000). https://doi.org/10.1002/sca.4950220506
  27. R. M. Trueb, Oxidative stress and its impact on skin, scalp and hair, Int J Cosmet Sci, 43(Supply 1), 9 (2021). https://doi.org/10.1111/ics.12736
  28. M. Furuse, A. Kubo and S. Tsukita, Clauin-based tight junctions are crucial for the mammalian epidermal barrier: A lesson from claudin-1-deficient mice, J cell Biol, 156(6), 1099 (2002). https://doi.org/10.1083/jcb.200110122
  29. R. S. English, A hypothetical pathogenesis model for androgenic alopecia: clarifying the dihydrotestosterone paradox and rate-limiting recovery factors, Med Hypotheses, 111, 73 (2018). https://doi.org/10.1016/j.mehy.2017.12.027