DOI QR코드

DOI QR Code

A Study on the Direction of Developing a Simulator for Performance Evaluation of Pulse Wave Detectors Through a Review of the Development Status of Cardiovascular Simulators

심혈관계 시뮬레이터 개발 동향 분석을 통한 맥파검사용기기 성능평가 시뮬레이터 연구개발 방향 모색

  • Lee, Ju-Yeon (Medical Device Research Division, National Institute of Food and Drug Safety Evaluation) ;
  • Kim, Jaeyoung (Medical Device Research Division, National Institute of Food and Drug Safety Evaluation) ;
  • Go, Dong-Hyun (Medical Device Research Division, National Institute of Food and Drug Safety Evaluation) ;
  • Lee, Ji-Won (Medical Device Research Division, National Institute of Food and Drug Safety Evaluation) ;
  • Lee, Tae-Hee (Medical Device Research Division, National Institute of Food and Drug Safety Evaluation) ;
  • Park, Chang-Won (Medical Device Research Division, National Institute of Food and Drug Safety Evaluation) ;
  • Lee, Su-Kyoung (Medical Device Research Division, National Institute of Food and Drug Safety Evaluation)
  • 이주연 (식품의약품안전평가원 의료제품연구부 의료기기연구과) ;
  • 김재영 (식품의약품안전평가원 의료제품연구부 의료기기연구과) ;
  • 고동현 (식품의약품안전평가원 의료제품연구부 의료기기연구과) ;
  • 이지원 (식품의약품안전평가원 의료제품연구부 의료기기연구과) ;
  • 이태희 (식품의약품안전평가원 의료제품연구부 의료기기연구과) ;
  • 박창원 (식품의약품안전평가원 의료제품연구부 의료기기연구과) ;
  • 이수경 (식품의약품안전평가원 의료제품연구부 의료기기연구과)
  • Received : 2022.03.24
  • Accepted : 2022.06.07
  • Published : 2022.06.30

Abstract

In this study, it is intended to provide basic data that can help develop a cardiovascular simulator for performance evaluation of pulse wave detectors by identifying the development status of domestic and overseas cardiovascular simulators. A total of 119 papers were selected by excluding duplicate literature, gray literature, and literature not related to a cardiovascular simulator. Based on the selected literature, the research trend of cardiovascular simulators was analyzed. As a result of analyzing the purpose of the study, most of the simulators were developed to evaluate the hemodynamic properties of artificial hearts and valves. In addition, it was used for simulation evaluation or hemodynamic studies such as pulse wave studies. As a result of analyzing configurations of the simulators, a heart most often consisted of only one left ventricle. For blood vessels, the Windkessel model was most often constructed using chambers and valves. In most studies, blood was reproduced by mixing glycerin and water to reproduce both density and viscosity. In addition, as a result of analysis from the perspective of medical device performance evaluation, simulators for evaluating artificial heart and artificial valves have been studied a lot, whereas simulators for blood pressure, pulse wave, and blood flow devices have been relatively insignificant. Based on the review results, we suggested considerations when developing a simulator for performance evaluations of a pulse wave detector.

Keywords

Acknowledgement

본 연구는 2022년도 식품의약품안전처 연구개발비(21174심평연 225)로 수행되었으며 이에 감사드립니다.

References

  1. 통계청, 2019년 사망원인통계 결과.
  2. ISO 18615:2020 Traditional Chinese medicine General requirements of electric radial pulse tonometric devices.
  3. Rosenberg G, Phillips WM, Landis DL, Pierce WS. Design and evaluation of the Pennsylvania State University mock circulatory system. ASAIO journal. 1981;4(2):41-49.
  4. ISO 5840-1:2021 Cardiovascular implants - Cardiac valve prostheses - Part 1: General requirements.
  5. Ferrari G, Lazzari CD, Mimmo R, Tosti DA. Mock circulatory system for in vitro reproduction of the left ventricle, the arterial tree and their interaction with a left ventricular assist device. Journal of medical engineering & technology. 1994;18(3):87-95. https://doi.org/10.3109/03091909409030237
  6. Yang TH, Shin SH. 심혈관계 시뮬레이터의 개발 동향. The Magazine of the IEIE. 2016;43(12):49-56.
  7. Liu Y, Allaire P, Wood H, Olsen D. Design and initial testing of a mock human circulatory loop for left ventricular assist device performance testing. Artificial organs. 2005;29(4):341-345. https://doi.org/10.1111/j.1525-1594.2005.29058.x
  8. Timms D, Hayne M, Tan A, Pearcy M. Evaluation of left ventricular assist device performance and hydraulic force in a complete mock circulation loop. Artificial organs. 2005;29(7):573-580. https://doi.org/10.1111/j.1525-1594.2005.29093.x
  9. Uebelhart B, da Silva B U, Fonseca J, Bock E, Leme J, da Silva C, Andrade A. Study of a centrifugal blood pump in a mock loop system. Artificial organs. 2013;37(11):946-949. https://doi.org/10.1111/aor.12228
  10. Huang F, Ruan X, Zou J, Qian W, Fu X. A fast building and effective hydraulic pediatric mock circulatory system for the evaluation of a left ventricular assist device. ASAIO journal. 2013;59(6):575-585. https://doi.org/10.1097/MAT.0b013e3182a78e08
  11. Valdovinos J, Shkolyar E, Carman GP, Levi DS. In Vitro Evaluation of an External Compression Device for F ontan Mechanical Assistance. Artificial organs. 2014;38(3):199-207. https://doi.org/10.1111/aor.12152
  12. Pirbodaghi T, Cotter C, Bourque K. Power consumption of rotary blood pumps: pulsatile versus constant-speed mode. Artificial Organs. 2014;38(12):1024-1028. https://doi.org/10.1111/aor.12323
  13. Stephens AF, Stevens MC, Gregory SD, Kleinheyer M, Salamonsen RF. In vitro evaluation of an immediate response Starling-like controller for dual rotary blood pumps. Artificial Organs. 2017;41(10):911-922. https://doi.org/10.1111/aor.12962
  14. Bark Jr DL, Yousefi A, Forleo M, Vaesken A, Heim F, Dasi LP. Reynolds shear stress for textile prosthetic heart valves in relation to fabric design. Journal of the mechanical behavior of biomedical materials. 2016;60:280-287. https://doi.org/10.1016/j.jmbbm.2016.01.016
  15. Shehab S, Allida SM, Newton PJ, Davidson PM, MacDonalds PS, Jansz PC. Hayward CS. Right Ventricular Failure Post LVAD Implantation Corrected with Biventricular Support: An In-Vitro Model. The Journal of Heart and Lung Transplantation. 2016;35(4):S318-S319.
  16. Pugovkin AA, Markov AG, Selishchev SV, Korn L, Walter M, Leonhardt S, Telyshev DV. Advances in hemodynamic analysis in cardiovascular diseases investigation of energetic characteristics of adult and pediatric sputnik left ventricular assist devices during mock circulation support. Cardiology Research and Practice. 2019.
  17. Kado Y, Polakowski AR, Kuban BD, Horvath DJ, Miyamoto T, Karimov JH, Fukamachi K. The effects of preserving mitral valve function on a left atrial assist device: an in vitro mock circulation loop study. ASAIO Journal. 2020;67(5):567-572.
  18. Jurney PL, Glynn JJ, Dykan IV, Hagen MW, Kaul S, Wampler RK, Giraud GD. Characterization of a pulsatile rotary total artificial heart. Artificial organs. 2021;45(2):135. https://doi.org/10.1111/aor.13810
  19. Wu Y, Allaire PE, Tao G, Adams M, Liu Y, Wood H, Olsen DB. A bridge from short-term to long-term left ventricular assist device-experimental verification of a physiological controller. Artificial organs. 2004;28(10):927-932. https://doi.org/10.1111/j.1525-1594.2004.07381.x
  20. Pelletier BA, Blaszczyk YM, Carstens P, Alvarez G, Lamping, F, Laumen M, Steinseifer U. Novel optical position sensing for miniaturized applications and validation in a total artificial heart. IEEE Transactions on Biomedical Engineering. 2015;63(3):478-484. https://doi.org/10.1109/TBME.2015.2463729
  21. Chung JH, Nam KW, Choi SW, Lee JJ, Park CY, Kim WE, Min BG. Analysis and Improvement of System Efficiency for the Moving-actuator type Bi-Ventricular Assist Device (AnyHeart). Journal of Biomedical Engineering Research. 2001;22(5):449-458.
  22. Kang SM, Choi SW. Blood flow and pressure evaluation for a pulsatile conduit-shaped ventricular assist device with structural characteristic of conduit shape. Transactions of the Korean Society of Mechanical Engineers B, 2011;35(11):1191-1198. https://doi.org/10.3795/KSME-B.2011.35.11.1191
  23. Vandenberghe S, Salizzoni S, Bajona P, Zehr KJ, Speziali G. In vitro testing of a temporary catheter-based aortic "parachute" valve. ASAIO journal. 2008;54(6):574-577. https://doi.org/10.1097/mat.0b013e31818b3d93
  24. Schampaert S, van't Veer M, van de Vosse FN, Pijls NH, de Mol BA, Rutten MC. In vitro comparison of support capabilities of intra?aortic balloon pump and Impella 2.5 left percutaneous. Artificial Organs. 2011;35(9):893-901. https://doi.org/10.1111/j.1525-1594.2011.01286.x
  25. Ismail M, Kabinejadian F, Nguyen YN, Tay E, Kim S, Leo HL. In vitro investigation of the hemodynamics of transcatheter heterotopic valves implantation in the cavo-atrial junction. Artificial Organs. 2015;39(9): 803-814. https://doi.org/10.1111/aor.12457
  26. Stock S, Scharfschwerdt M, Meyer-Saraei R, Richardt D, Charitos EI, Sievers HH, Hanke T. Does undersizing of transcatheter aortic valve bioprostheses during valve-in-valve implantation avoid coronary obstruction? An in vitro study. The Thoracic and Cardiovascular Surgeon. 2017;65(03):218-224. https://doi.org/10.1055/s-0036-1584356
  27. Sadri V, Madukauwa-David ID, Yoganathan AP. In vitro evaluation of a new aortic valved conduit. The Journal of Thoracic and Cardiovascular Surgery. 2021;161(2):581-590. https://doi.org/10.1016/j.jtcvs.2019.09.181
  28. Loree HM, Agyapong G, Favreau EG, Ngai GA, Tansley GD, Dixon BS, Franano FN. In vitro study of a medical device to enhance arteriovenous fistula eligibility and maturation. ASAIO Journal. 2015;61(4):480-486. https://doi.org/10.1097/MAT.0000000000000240
  29. May-Newman K, Montes R, Campos J, Marquez-Maya N, Vu V, Zebrowski E, Benkowski R. Reducing regional flow stasis and improving intraventricular hemodynamics with a tipless inflow cannula design: An in vitro flow visualization study using the EVAHEART LVAD. Artificial Organs. 2019;43(9):834-848. https://doi.org/10.1111/aor.13477
  30. Ferrari G, Balasubramanian P, Tubaldi E, Giovanniello F, Amabili M. Experiments on dynamic behaviour of a Dacron aortic graft in a mock circulatory loop. Journal of biomechanics. 2019;86:132-140. https://doi.org/10.1016/j.jbiomech.2019.01.053
  31. Legerer C, Stevens M, Vazquez GM, Muller T, Ferrington L. An experimental evaluation of a concept to improve conventional aortic prostheses. Journal of Biomechanics. 2020;112:110010. https://doi.org/10.1016/j.jbiomech.2020.110010
  32. Haiman G, Nazif T, Moses JW, Ashkenazi A, Margolis P, Lansky AJ. Reduction of Cerebral Emboli: In vitro Study with a Novel Cerebral Embolic Protection Device. Medical Devices (Auckland, NZ). 2020;13:67.
  33. Kim SH, Yun SU, Cho MH, Lee SJ, Lim MH, Seo SY, Jeon GR. Development of blood pressure simulator for test of the arm-type automatic blood pressure monitor. Journal of Sensor Science and Technology. 24(4):239-246. https://doi.org/10.5369/JSST.2015.24.4.239
  34. Doh I, Lim HK, Ahn B, Chee Y, Lee J, Oh JH. A Simulator for the Validation of Non-invasive Blood Pressure (NIBP) Monitoring Devices. Journal of Biomedical Engineering Research. 2017;38(3):111-115. https://doi.org/10.9718/JBER.2017.38.3.111
  35. Jun MH, Kim YM, Bae JH, Jung CJ, Cho JH, Jeon, YJ. Development of a tonometric sensor with a decoupled circular array for precisely measuring radial artery pulse. Sensors. 2016;16(6):768. https://doi.org/10.3390/s16060768
  36. Rezaienia M A, Paul G, Avital E J, Mozafari S, Rothman M, Korakianitis T. In-vitro investigation of the hemodynamic responses of the cerebral, coronary and renal circulations with a rotary blood pump installed in the descending aorta. Medical engineering & physics. 2017;40:2-10. https://doi.org/10.1016/j.medengphy.2016.11.006
  37. Sunagawa G, Byram N, Karimov JH, Horvath DJ, Moazami N, Starling RC, Fukamachi K. The contribution to hemodynamics even at very low pump speeds in the HVAD. The Annals of thoracic surgery. 2016;101(6):2260-2264. https://doi.org/10.1016/j.athoracsur.2015.12.002
  38. May-Newman K, Fisher B, Hara M, Dembitsky W, Adamson R. Mitral valve regurgitation in the LVAD-assisted heart studied in a mock circulatory loop. Cardiovascular engineering and technology. 2016;7(2):139-147. https://doi.org/10.1007/s13239-016-0261-2
  39. Kado Y, Polakowski AR, Kuban BD, Horvath DJ, Miyamoto T, Karimov JH, Fukamachi K. Left atrial assist device function at various heart rates using a mock circulation loop. The International Journal of Artificial Organs. 2021;44(7):465-470. https://doi.org/10.1177/0391398820977508
  40. Vandenberghe S, Segers P, Antaki JF, Meyns B, Verdonck PR. Hemodynamic modes of ventricular assist with a rotary blood pump: continuous, pulsatile, and failure. Asaio Journal. 2005;51(6):711-718. https://doi.org/10.1097/01.mat.0000179251.40649.45
  41. Garcia MAZ, Enriquez LA, Dembitsky W, May-Newman K. The effect of aortic valve incompetence on the hemodynamics of a continuous flow ventricular assist device in a mock circulation. ASAIO journal. 2008;54(3):237-244. https://doi.org/10.1097/mat.0b013e31816a309b
  42. Shu F, Vandenberghe S, Antaki JF. The importance of dQ/dt on the flow field in a turbodynamic pump with pulsatile flow. Artificial organs. 2009;33(9):757-762. https://doi.org/10.1111/j.1525-1594.2009.00849.x
  43. Shiose A, Nowak K, Horvath DJ, Massiello AL, Golding LA, Fukamachi K. Speed modulation of the continuous-flow total artificial heart to simulate a physiologic arterial pressure waveform. ASAIO journal (American Society for Artificial Internal Organs: 1992). 2010;56(5):403. https://doi.org/10.1097/mat.0b013e3181e650f8
  44. Timms D, Gregory S, Hsu PL, Thomson B, Pearcy M, McNeil K, Steinseifer U. Atrial versus ventricular cannulation for a rotary ventricular assist device. Artificial organs. 2010;34(9):714-720. https://doi.org/10.1111/j.1525-1594.2010.01093.x
  45. Timms D, Gude E, Gaddum N, Lim E, Greatrex N, Wong K, Fiane A. Assessment of right pump outflow banding and speed changes on pulmonary hemodynamics during biventricular support with two rotary left ventricular assist devices. Artificial organs. 2011;35(8):807-813. https://doi.org/10.1111/j.1525-1594.2011.01283.x
  46. Timms D, Gude E, Gaddum N, Lim E, Greatrex N, Wong K, Fiane A. Assessment of right pump outflow banding and speed changes on pulmonary hemodynamics during biventricular support with two rotary left ventricular assist devices. Artificial organs. 2011;35(8):807-813. https://doi.org/10.1111/j.1525-1594.2011.01283.x
  47. Tolpen S, Janmaat J, Reider C, Kallel F, Farrar D, May-Newman K. Programmed speed reduction enables aortic valve opening and increased pulsatility in the LVAD-assisted heart. Asaio Journal. 2015;61(5):540-547. https://doi.org/10.1097/MAT.0000000000000241
  48. Shu F, Vandenberghe S, Brackett J, Antaki J F. Classification of unsteady flow patterns in a rotodynamic blood pump: introduction of non-dimensional regime map. Cardiovascular engineering and technolog. 2015;6(3):230-241. https://doi.org/10.1007/s13239-015-0231-0
  49. Sunagawa G, Byram N, Karimov JH, Horvath DJ, Moazami N, Starling RC, Fukamachi K. In vitro hemodynamic characterization of HeartMate II at 6000 rpm: Implications for weaning and recovery. The Journal of thoracic and cardiovascular surgery. 2015;150(2):343-348. https://doi.org/10.1016/j.jtcvs.2015.04.015
  50. Zhuang X, Yang M, Xu L, Ou W, Xu Z, Meng F, Huang H. Pumping rate study of a left ventricular assist device in a mock circulatory system. ASAIO Journal. 2016;62(4):410-420. https://doi.org/10.1097/MAT.0000000000000361
  51. Bozkurt S, van de Vosse FN, Rutten M. Enhancement of arterial pressure pulsatility by controlling continuous-flow left ventricular assist device flow rate in mock circulatory system. Journal of Medical and Biological Engineering. 2016;36(3):308-315. https://doi.org/10.1007/s40846-016-0140-1
  52. Petrou A, Pergantis P, Ochsner G, Amacher R, Krabatsch T, Falk V, Daners MS. Response of a physiological controller for ventricular assist devices during acute patho-physiological events: an in vitro study. Biomedical Engineering/Biomedizinische Technik. 2017;62(6):623-633. https://doi.org/10.1515/bmt-2016-0155
  53. Siewnicka A, Janiszowski K. A model for estimating the blood flow of the POLVAD pulsatile ventricular assist device. IEEE Transactions on Biomedical Engineering. 2018;65(11):2552-2559. https://doi.org/10.1109/tbme.2018.2807879
  54. Ng BC, Kleinheyer M, Smith PA, Timms D, Cohn WE, Lim E. Pulsatile operation of a continuous-flow right ventricular assist device (RVAD) to improve vascular pulsatility. PloS one. 2018;13(4):e0195975. https://doi.org/10.1371/journal.pone.0195975
  55. Zhu S, Luo L, Yang B, Li X, Ni K, Zhou Q, Wang X. In vitro testing of an intra-ventricular assist device. Computer Assisted Surgery. 2019;24(sup1):89-95. https://doi.org/10.1080/24699322.2018.1560099
  56. Diedrich M, Hildebrand S, Lommel MK, Finocchiaro T, Cuenca E, De Ben H, Jansen S. Experimental investigation of rightleft flow balance concepts for a total artificial heart. Artificial Organs. 2021;45(4):364-372. https://doi.org/10.1111/aor.13830
  57. Tan SGD, Hon JKF, Nguyen YN, Kim S, Leo HL. An in vitro investigation into the hemodynamic effects of orifice geometry and position on left ventricular vortex formation and turbulence intensity. Artificial Organs. 2020;44(12):e520-e531. https://doi.org/10.1111/aor.13781
  58. Liu GM, Hou JF, Wei RJ, Hu SS. A 3-dimensional-printed left ventricle model incorporated into a mock circulatory loop to investigate hemodynamics inside a severely failing ventricle supported by a blood pump. Artificial Organs. 2021;45(2):143-150. https://doi.org/10.1111/aor.13802
  59. Salaun E, Zenses AS, Evin M, Collart F, Habib G, Pibarot P, Rieu R. Effect of oversizing and elliptical shape of aortic annulus on transcatheter valve hemodynamics: An in vitro study. International journal of cardiology. 2016;208:28-35. https://doi.org/10.1016/j.ijcard.2016.01.048
  60. Evin M, Pibarot P, Guivier-Curien C, Tanne D, Kadem L, Rieu R. Localized transvalvular pressure gradients in mitral bileaflet mechanical heart valves and impact on gradient overestimation by Doppler. Journal of the American Society of Echocardiography. 2013;26(7):791-800. https://doi.org/10.1016/j.echo.2013.03.012
  61. Hartrumpf M, Albes JM, Krempl T, Rudolph V, Wahlers T. The hemodynamic performance of standard bileaflet valves is impaired by a tilted implantation position. European journal of cardio-thoracic surgery. 2003;23(3):283-291. https://doi.org/10.1016/S1010-7940(02)00804-7
  62. Babin-Ebell J, Sievers HH, Misfeld M, Runge M, Vogt PR, Scharfschwerdt M. In-vitro hemodynamics of stented bioprosthetic heart valves in the tilted implantation position. J Heart Valve Dis. 2008;17(5):566-570.
  63. Padala M, Gyoneva LI, Thourani VH, Yoganathan AP. Impact of mitral valve geometry on hemodynamic efficacy of surgical repair in secondary mitral regurgitation. J Heart Valve Dis. 2014;23(1):79-87.
  64. Midha PA, Raghav V, Condado JF, Okafor IU, Lerakis S, Thourani VH, Yoganathan AP. Valve type, size, and deployment location affect hemodynamics in an in vitro valve-in-valve model. JACC: Cardiovascular Interventions. 2016;9(15):1618-1628. https://doi.org/10.1016/j.jcin.2016.05.030
  65. Calderan J, Mao W, Sirois E, Sun W. Development of an in vitro model to characterize the effects of transcatheter aortic valve on coronary artery flow. Artificial organs. 2016;40(6):612-619. https://doi.org/10.1111/aor.12589
  66. Li CP, Lu PC, Liu JS, Lo CW, Hwang NH. Role of vortices in cavitation formation in the flow across a mechanical heart valve. The Journal of Heart Valve Disease. 2008;17(4):435-445.
  67. Padala M, Powell SN, Croft LR, Thourani VH, Yoganathan AP, Adams DH. Mitral valve hemodynamics after repair of acute posterior leaflet prolapse: quadrangular resection versus triangular resection versus neochordoplasty. The Journal of thoracic and cardiovascular surgery. 2009;138(2):309-315. https://doi.org/10.1016/j.jtcvs.2009.01.031
  68. Casa LD, Dolensky JR, Spinner EM, Veledar E, Lerakis S, Yoganathan AP. Impact of pulmonary hypertension on tricuspid valve function. Annals of biomedical engineering. 2013;41(4):709-724. https://doi.org/10.1007/s10439-012-0713-2
  69. Bark Jr DL, Yousefi A, Forleo M, Vaesken A, Heim F, Dasi LP. Reynolds shear stress for textile prosthetic heart valves in relation to fabric design. Journal of the mechanical behavior of biomedical materials. 2016;60:280-287. https://doi.org/10.1016/j.jmbbm.2016.01.016
  70. Ismail M, Kumar GP, Kabinejadian F, Nguyen YN, Cui F, Tay ELW, Leo HL. An experimental and computational study on the effect of caval valved stent oversizing. Cardiovascular Engineering and Technology. 2016;7(3):254-269. https://doi.org/10.1007/s13239-016-0268-8
  71. Nguyen YN, Ismail M, Kabinejadian F, Ong CW, Tay ELW, Leo HL. Experimental study of right ventricular hemodynamics after tricuspid valve replacement therapies to treat tricuspid regurgitation. Cardiovascular engineering and technology. 2017;8(4):401-418. https://doi.org/10.1007/s13239-017-0328-8
  72. McNally A, Madan A, Sucosky P. Morphotype-dependent flow characteristics in bicuspid aortic valve ascending aortas: a benchtop particle image velocimetry study. Frontiers in physiology. 2017;8:44. https://doi.org/10.3389/fphys.2017.00044
  73. Geier A, Kunert A, Albrecht G, Liebold A, Hoenicka M. Influence of cannulation site on carotid perfusion during extracorporeal membrane oxygenation in a compliant human aortic model. Annals of biomedical engineering. 2017;45(10):2281-2297. https://doi.org/10.1007/s10439-017-1875-8
  74. Madukauwa-David ID, Sadri V, Midha PA, Babaliaros V, Aidun C, Yoganathan AP. An evaluation of the influence of coronary flow on transcatheter heart valve neo-sinus flow stasis. Annals of Biomedical Engineering. 2020;48(1):169-180. https://doi.org/10.1007/s10439-019-02324-y
  75. Cabrera Fischer EI, Armentano RL, Pessana FM, Graf S, Romero L, Christen AI, Levenson J. Endothelium-dependent arterial wall tone elasticity modulated by blood viscosity. American Journal of Physiology-Heart and Circulatory Physiology. 2002;282(2):H389-H394. https://doi.org/10.1152/ajpheart.00330.2001
  76. Bia D, Aguirre I, Zocalo Y, Devera L, Fischer EC, Armentano R. Regional differences in viscosity, elasticity, and wall buffering function in systemic arteries: pulse wave analysis of the arterial pressure-diameter relationship. Revista Espanola de Cardiologia (English Edition). 2005;58(2):167-174. https://doi.org/10.1016/S1885-5857(06)60360-5
  77. Vukicevic M, Chiulli JA, Conover T, Pennati G, Hsia TY, Figliola RS, Network MOCHA. Mock circulatory system of the Fontan circulation to study respiration effects on venous flow behavior. ASAIO Journal (American Society for Artificial Internal Organs: 1992). 2013;59(3):253. https://doi.org/10.1097/MAT.0b013e318288a2ab
  78. Corazza, I, Bianchini D, Marcelli E, Cercenelli L, Zannoli R. Passive aortic counterpulsation: Biomechanical rationale and bench validation. Journal of Biomechanics. 2014;47(7):1618-1625. https://doi.org/10.1016/j.jbiomech.2014.03.001
  79. Vukicevic M, Conover T, Jaeggli M, Zhou J, Pennati G, Hsia TY, Figliola RS. Control of respiration-driven retrograde flow in the subdiaphragmatic venous return of the Fontan circulation. ASAIO journal (American Society for Artificial Internal Organs: 1992). 2014;60(4):391. https://doi.org/10.1097/mat.0000000000000093
  80. Van Cauwenberge J, Lovstakken L, Fadnes S, Rodriguez-Morales A, Vierendeels J, Segers P, Swillens A. Assessing the performance of ultrafast vector flow imaging in the neonatal heart via multiphysics modeling and in vitro experiments. IEEE transactions on ultrasonics, ferroelectrics, and frequency control. 2016;63(11):1772-1785. https://doi.org/10.1109/TUFFC.2016.2596804
  81. Harle T, Luz M, Meyer S, Kronberg K, Nickau B, Escaned J, Elsasser A. Effect of coronary anatomy and hydrostatic pressure on intracoronary indices of stenosis severity. Cardiovascular Interventions. 2017;10(8):764-773. https://doi.org/10.1016/j.jcin.2016.12.024
  82. Hatoum H, Dasi LP. Spatiotemporal complexity of the aortic sinus vortex as a function of leaflet calcification. Annals of biomedical engineering. 2019;47(4):1116-1128. https://doi.org/10.1007/s10439-019-02224-1
  83. Ding H, Zhang Y, Liu Y, Liu Z, Shi C, Nie Z, Zeng Y. Simulated coronary arterial hemodynamics of myocardial bridging. Reviews in Cardiovascular Medicine. 2019;20(4).
  84. Legendre D, Fonseca J, Andrade A, Biscegli JF, Manrique R, Guerrino D, Lucchi JC. Mock circulatory system for the evaluation of left ventricular assist devices, endoluminal prostheses, and vascular diseases. Artificial organs. 2008;32(6):461-467. https://doi.org/10.1111/j.1525-1594.2008.00569.x
  85. Zannoli R, Corazza I, Branzi A. Mechanical simulator of the cardiovascular system. Physica Medica. 2009;25(2):94-100. https://doi.org/10.1016/j.ejmp.2008.02.007
  86. Gwak KW, Kim HD, Kim CW. Feedback linearization control of a cardiovascular circulatory simulator. IEEE Transactions on Control Systems Technology. 2018;23(5):1970-1977. https://doi.org/10.1109/TCST.2014.2388251
  87. Gwak KW. Nonlinear Adaptive Control of a Piston Pump Mock Ventricle. IEEE/ASME Transactions on Mechatronics. 2015;20(5):2403-2412. https://doi.org/10.1109/TMECH.2014.2381852
  88. Arita M, Tono S, Kasegawa H, Umezu M. Multiple purpose simulator using a natural porcine mitral valve. Asian Cardiovascular and Thoracic Annals. 2004;12(4):350-356. https://doi.org/10.1177/021849230401200415
  89. Gwak KW. Design and evaluation of cardiovascular impedance simulator considering mechanical limits. Journal of the Korean Society for Precision Engineering. 2015;25(1):151-159.
  90. Pantalos GM, Ionan C, Koenig SC, Gillars KJ, Horrell T, Sahetya S, Gray Jr LA. Expanded pediatric cardiovascular simulator for research and training. ASAIO Journal. 2010;56(1):67-72. https://doi.org/10.1097/mat.0b013e3181c838ae
  91. Gwak KW, Paden BE, Antaki JF, Ahn IS. Experimental verification of the feasibility of the cardiovascular impedance simulator. IEEE transactions on biomedical engineering. 2009;57(5):1176-1183. https://doi.org/10.1109/TBME.2009.2030498
  92. Schampaert S, Pennings KAMA, Van de Molengraft MJG, Pijls NHJ, Van de Vosse FN, Rutten MCM. A mock circulation model for cardiovascular device evaluation. Physiological Measurement. 2014;35(4):687. https://doi.org/10.1088/0967-3334/35/4/687
  93. Rezaienia MA, Rahideh A, Alhosseini Hamedani B, Bosak DEM, Zustiak S, Korakianitis T. Numerical and in vitro investigation of a novel mechanical circulatory support device installed in the descending aorta. Artificial organs. 2015;39(6):502-513. https://doi.org/10.1111/aor.12431
  94. Gwak KW. Model-Referenced Cardiovascular Circulatory Simulator: Construction and Control. Artificial Organs. 2015;39(4):309-318. https://doi.org/10.1111/aor.12378
  95. Rezaienia MA, Paul G, Avital E, Rahideh A, Rothman MT, Korakianitis T. In-vitro investigation of cerebral-perfusion effects of a rotary blood pump installed in the descending aorta. Journal of biomechanics. 2016;49(9):1865-1872. https://doi.org/10.1016/j.jbiomech.2016.04.027
  96. Piola M, Vismara R, Tasca G, Lucherini F, Redaelli P, Soncini M, Fiore GB. Design of a simple coronary impedance simulator for the in vitro study of the complex coronary hemodynamics. Physiological Measurement. 2016;37(12):2274. https://doi.org/10.1088/0967-3334/37/12/2274
  97. Mueller I, Jansen-Park SH, Neidlin M, Steinseifer U, Abel D, Autschbach R, Sonntag SJ. Design of a right ventricular mock circulation loop as a test bench for right ventricular assist devices. Biomedical Engineering/Biomedizinische Technik. 2017;62(2):131-137. https://doi.org/10.1515/bmt-2016-0104
  98. Jansen-Park SH, Hsu PL., Muller I, Steinseifer U, Abel D, Autschbach R, Schmitz-Rode T. A mock heart engineered with helical aramid fibers for in vitro cardiovascular device testing. Biomedical Engineering/Biomedizinische Technik. 2017;62(2):139-148. https://doi.org/10.1515/bmt-2016-0106
  99. Min S, Jin C, Paeng DG. Time-synchronized measurement and cyclic analysis of ultrasound imaging from blood with blood pressure in the mock pulsatile blood circulation system. The Journal of the Acoustical Society of Korea. 2017;36(5):361-369. https://doi.org/10.7776/ASK.2017.36.5.361
  100. Ryu GT. A Study on Arterial and Venous Invasive Blood Pressure Simulator Using Decompressor. Journal of the Institute of Electronics and Information Engineers, 2018;55(12),114-119. https://doi.org/10.5573/ieie.2018.55.12.114
  101. Petrou A, Granegger M, Meboldt M, Daners MS. A versatile hybrid mock circulation for hydraulic investigations of active and passive cardiovascular implants. Asaio Journal. 2019; 65(5):495. https://doi.org/10.1097/mat.0000000000000851
  102. Papolla C, Darwish A, Kadem L, Rieu R. Impact of mitral regurgitation on the flow in a model of a left ventricle. Cardiovascular Engineering and Technology. 2020;11(6):708-718. https://doi.org/10.1007/s13239-020-00490-y
  103. Lee JY, Shin SH. Development of a Cardiovascular Simulator with Cardiovascular Characteristics. The Journal of the Society of Korean Medicine Diagnostics, 2012;16(3):33-40.
  104. Lee JY, Shin SH. Development of the cardiovascular simulator for pulse diagnosis study. The Journal of the Society of Korean Medicine Diagnostics. 2012;16(1):19-26.
  105. Lee JY, Jang M, Shin SH. Development of a cardiovascular simulator focused on the pressure wave. Journal of Biomedical Engineering Research. 2013;4(1):40-45.
  106. Lee JY, Kim JU, Shin SH. Development of Cardiovascular Simulator with Control of Pulse Pressure for Pulse Wave Study. Journal of the Institute of Electronics and Information Engineers. 2014;51(10):204-209. https://doi.org/10.5573/IEIE.2014.51.10.204
  107. Lee JY, Shin SH. Evaluation of methods for estimating the pulse reflection site with cardiovascular simulator. The Journal of the Society of Korean Medicine Diagnostics. 2015;19(1):47-54.
  108. Jung CJ, Jo JH, Jun MH, Jeon YJ, Kim YM. Variation Factor Assessment of Radial Artery Pulse by the Tonometry Angle of the Pulse Pressure Sensor. Journal of Sensor Science and Technology. 2016;25(2):138-142. https://doi.org/10.5369/JSST.2016.25.2.138
  109. Lee JY, Jang M, Shin SH. Study on the depth, rate, shape, and strength of pulse with cardiovascular simulator. Evidence-Based Complementary and Alternative Medicine. 2017.
  110. Biglino G, Cosentino D, Steeden JA, De Nova L, Castelli M, Ntsinjana H, Schievano S. Using 4D cardiovascular magnetic resonance imaging to validate computational fluid dynamics: a case study. Frontiers in pediatrics. 2015;3:107.
  111. Miyamoto T, Horvath DJ, Horvath DW, Karimov JH, Byram N, Kuban BD, Fukamachi K. Simulated performance of the Cleveland Clinic continuous-flow total artificial heart using the Virtual Mock Loop. ASAIO journal (American Society for Artificial Internal Organs: 1992). 2019;65(6):565. https://doi.org/10.1097/MAT.0000000000000857
  112. Padala M, Sweet M, Hooson S, Thourani VH, Yoganathan AP. Hemodynamic comparison of mitral valve repair: techniques for a flail anterior leaflet. J Heart Valve Dis. 2014;23(2):171-6.
  113. Wong KC, Busen M, Benzinger C, Gang R, Bezema M, Greatrex N, Steinseifer U. Effect of inflow cannula tip design on potential parameters of blood compatibility and thrombosis. Artificial Organs. 2014;38(9):810-817. https://doi.org/10.1111/aor.12369
  114. Wong KC, Busen M, Benzinger C, Gang R, Bezema M, Greatrex N, Steinseifer U. Effect of rotary blood pump pulsatility on potential parameters of blood compatibility and thrombosis in inflow cannula tips. The International Journal of Artificial Organs. 2014;37(12):875-887. https://doi.org/10.5301/ijao.5000361
  115. Zhou J, Esmaily-Moghadam M, Conover TA, Hsia TY, Marsden AL, Figliola RS. In vitro assessment of the assisted bidirectional Glenn procedure for stage one single ventricle repair. Cardiovascular engineering and technology. 2015;(3):256-267.
  116. Hang T, Giardini A, Biglino G, Conover T, Figliola RS. In vitro validation of a multiscale patient-specific Norwood Palliation model. ASAIO Journal. 2016;62(3):317-324. https://doi.org/10.1097/MAT.0000000000000336
  117. Hirohashi Y, Tanaka A, Yoshizawa M, Sugita N, Abe M, Kato T, Yambe T. Sensorless cardiac phase detection for synchronized control of ventricular assist devices using nonlinear kernel regression model. Journal of Artificial Organs. 2016;9(2):114-120. https://doi.org/10.1007/s10047-005-0325-9
  118. Kolyva C, Pepper JR, Khir AW. Newly shaped intra-aortic balloons improve the performance of counterpulsation at the semirecumbent position: an in vitro study. Artificial Organs. 2016;40(8):E146-E157. https://doi.org/10.1111/aor.12791
  119. Geier A, Kunert A, Albrecht G, Liebold A, Hoenicka M. Influence of cannulation site on carotid perfusion during extracorporeal membrane oxygenation in a compliant human aortic model. Annals of biomedical engineering. 2017;45(10):2281-2297. https://doi.org/10.1007/s10439-017-1875-8
  120. Knoops PG, Biglino G, Hughes AD, Parker KH, Xu L, Schievano S, Torii R. A mock circulatory system incorporating a compliant 3D-printed anatomical model to investigate pulmonary hemodynamics. Artificial organs. 2017;41(7):637-646. https://doi.org/10.1111/aor.12809
  121. Fanni BM, Sauvage E, Celi S, Norman W, Vignali E, Landini L, Capelli C. A proof of concept of a non-invasive imagebased material characterization method for enhanced patientspecific computational modeling. Cardiovascular Engineering and Technology. 2020;11(5):532-543. https://doi.org/10.1007/s13239-020-00479-7
  122. Chen PC, Lin JC, Chiang CH, Chen YC, Chen JE, Liu WH. Engineering additive manufacturing and molding techniques to create lifelike willis' circle simulators with aneurysms for training neurosurgeons. Polymers. 2020;12(12):2901. https://doi.org/10.3390/polym12122901
  123. Steinlauf S, Shenberger SH, Halak M, Liberzon A, Avrahami I. Aortic arch aneurysm repair-Unsteady hemodynamics and perfusion at different heart rates. Journal of Biomechanics. 2021;121:110351. https://doi.org/10.1016/j.jbiomech.2021.110351
  124. Kim TH, Ko GY, Song HY, Park IK, Shin JH, Lim JO, Choi EGK. Usefulness of Pulsatile Flow Aortic Aneurysm Phantoms for Stent-graft Placement. Journal of radiological science and technology. 2007;30(3):205-212.
  125. Bernal M, Saldarriaga J, Cabeza C, Negreira C, Bustamante J, Brum J. Development and evaluation of anisotropic and nonlinear aortic models made from clinical images for in vitro experimentation. Physics in Medicine & Biology. 2019;64(16):165006. https://doi.org/10.1088/1361-6560/ab2db5
  126. Nicolaas W, Nikolaos S, Mark IMN, Berend EW. Snapshots of Hemodynamics 3rd Edition. Springer. 207p.