DOI QR코드

DOI QR Code

Extractive Metallurgy and Recycling of Cobalt

코발트의 제련과 리사이클링

  • Sohn, Ho-Sang (School of Materials Science and Engineering, Kyungpook National University)
  • 손호상 (경북대학교 신소재공학부)
  • Received : 2022.04.25
  • Accepted : 2022.05.30
  • Published : 2022.06.28

Abstract

Cobalt is a vital metal in the modern society because of its applications in lithium-ion batteries, super alloys, hard metals, and catalysts. Further, cobalt is a representative rare metal and is the 30th most abundant element in the Earth's crust. This study reviews the current status of cobalt extraction and recycling processes, along with the trends in its production amount and use. Although cobalt occurs in a wide range of minerals, such as oxides and sulfides of copper and nickel ores, the amounts of cobalt in the minerals are too low to be extracted economically. The Democratic Republic of Congo (DRC) leads cobalt mining, and accounts for 68.9 % of the global cobalt reserves (142,000 tons in 2020). Cobalt is mainly extracted from copper-cobalt and nickel-cobalt concentrates and is occasionally extracted directly from the ore itself by hydro-, pyro-, and electro-metallurgical processes. These smelting methods are essential for developing new recycling processes to extract cobalt from secondary resources. Cobalt is mainly recycled from lithium-ion batteries, spent catalysts, and cobalt alloys. The recycling methods for cobalt also depend on the type of secondary cobalt resource. Major recycling methods from secondary resources are applied in pyro- and hydrometallurgical processes.

Keywords

References

  1. D. Lindsay and W. Kerr: Nature Chemistry, 3 (2021) 494. https://doi.org/10.1038/nchem.1053
  2. M. E. Weeks: J. Chem. Educ., 9 (1932) 22. https://doi.org/10.1021/ed009p22
  3. O. Pourret and M. P. Faucon: Cobalt, Encyclopedia of Geochemistry, W. White (Ed.), Springer International Publishing, Switzerland, (2016) 1.
  4. H.-S. Sohn: Recycling of Common Metals, KNU Press, Daegu, Korea, (2020) 17.
  5. H.-S. Sohn: J. Powder Mater., 28 (2021) 342. https://doi.org/10.4150/KPMI.2021.28.4.342
  6. H.-S. Sohn: Resource Recycling, 30 (2021) 3. https://doi.org/10.7844/kirr.2021.30.2.3
  7. USGS, https://www.usgs.gov/centers/nmic/cobalt-statistics-and-information.
  8. K. B. Shedd: Cobalt, U.S. Geological Survey, Mineral Commodity Summaries 2021, USGS, Reston, Virginia (2021) 50.
  9. https://www.cruxinvestor.com/articles/the-ultimate-guide-to-the-cobalt-market-2021-2030f. (2021.12.30.)
  10. M. Akahori: Kinzoku-shigen repoto (JOGMEC), 49 (2019) 1.
  11. T. Schmidt, M. Buchert and L. Schebek: Resour. Conserv. Recycl., 112 (2016) 107. https://doi.org/10.1016/j.resconrec.2016.04.017
  12. Q. Dehaine, L. T. Tijsseling, H. J. Glass, T. Tormanen and A. R. Butcher: Miner. Eng., 160 (2021) 106656. https://doi.org/10.1016/j.mineng.2020.106656
  13. Frank K. Crundwell, M. Moats, V. Ramachandran, T. Tobinson and W. G. Davenport: Extractive Metallurgy of Nickel, Cobalt and Platinum-Group Metals, Elsevier, UK (2011) 386.
  14. H.-S. Sohn: Recycling of Common Metals, KNU Press, Daegu, Korea, (2020) 188.
  15. T. Usmani, C. Santos, N. Dempers, A. M. Ameen, and C. O'Brien: KCC 2017 NI 43-101 Technical Report, (2017) 82.
  16. R. Laucournet, G. Garin, E. Senechal and B. Yazicioglu,: Li-ion Batterires Recycling, ELIBAMA, (2014) 1.
  17. T. Georgi-Maschler, B. Friedrich, R. Weyhe, H. Heegn, and M. Rutz: J. Power Sources, 207 (2012) 173. https://doi.org/10.1016/j.jpowsour.2012.01.152
  18. S. H. Joo, S. M. Shin, D. J. Shin and J. P. Wang: J. Eng. Manuf., 229 (2015) 212. https://doi.org/10.1177/0954405414567521
  19. B. Friedrich, M. Vest, H. Wang, and R. Weyhe: Processing of Li-based Electric Vehicle Batteries for Maximized Recycling Efficiency, Porc. 16th ICBR, Venice, Italy (2011) 1.
  20. L. Zeng and C. Y. Cheng: Hydrometallurgy, 98 (2009) 1. https://doi.org/10.1016/j.hydromet.2009.03.010
  21. V. V. S. Prasad, A. S. Rao, U. Prakash, V. R. Rao, P. K. Rao and K. M. Gupt: ISIJ Inter., 36 (1996) 1459. https://doi.org/10.2355/isijinternational.36.1459
  22. C. M. Diaz, C. Levac, P. J. Mackey, S. W. Marcuson, R. Schonewille and N. J. Themelis: The Canadian Metallurgical & Materials Landscape 1960 to 2011, P. Mackey and N. S. J. Kapusta (Ed.), MET SOC, Canada (2011) 342.
  23. C. J. Ferron: Ni-Co 2013, T. Battle, M. Moats, V. Cocalia, H. Oosterhof, S. Alam, A. Allanore, R. Jones, N. Stubina, C. Anderson and S. Wang(Ed.), Springer, Texas (2013) 53.
  24. R. R. Srivastava, M.S Kim, J. C Lee, M. K. Jha, and B. S Kim: J Mater. Sci., 49 (2014) 4671. https://doi.org/10.1007/s10853-014-8219-y
  25. H. A. Petersen, T. H. T. Myren, S. J. O'Sullivan and O. R. Luca: Mater. Adv., 2 (2021) 1113. https://doi.org/10.1039/D0MA00689K