DOI QR코드

DOI QR Code

저궤도 위성 원격측정데이터 신호 수신을 위한 S-대역 위상배열안테나 시스템 연구

A Study on S-Band Phased Array Antenna System for Receiving LEO Satellite Telemetry Signals

  • 투고 : 2022.05.17
  • 심사 : 2022.06.13
  • 발행 : 2022.06.30

초록

본 논문에서는 저궤도 위성 원격측정데이터 신호 수신을 위한 S-대역 위상배열안테나를 제안하였다. 제안된 안테나는 16개의 부배열 조립체, 16개의 능동회로모듈, 수직 급전회로망 및 제어/전원반으로 구성되며 고각 방향으로 빔틸트가 수행된다. 개발된 안테나는 고각 축과 위성 궤적을 일치시키고 개구 중심을 위성 궤적 상의 최대 고각을 바라보도록 하여 정밀한 위성 추적을 수행하였다. 저궤도 위성의 궤적은 위성점 계산을 통하여 정확하게 산출하였다. 위성 추적 시험은 최대 고각을 기준으로 ±30° 범위에서 수행되였다. 위성 추적 시험 결과 최대 고각에서의 S/N비는 16.5 dB이고 Eb/No는 13.3 dB를 얻었다. 수행된 위성 추적 결과는 사전 시스템 분석 결과와 잘 일치함을 확인하였다.

This paper presents a S-band phased array antenna system for receiving LEO satellite telemetry signals. The proposed antenna, which is performed to be beam-tiled along the elevation direction, consists of 16 sub-array assemblies, 16 active circuit modules, a perpendicular feed network and a control/power unit. In order to precisely track an LEO satellite, the developed antenna is placed with its elevation axis along the projected trajectory of the satellite on the earth. The center of antenna aperture is facing to the maximum elevation angle in the LEO trajectory. The beam-tilted angles for tracking LEO satellite are obtained by calculating accurately satellite points. Satellite tracking measurements are carried out in the range of ±30° with the respect to the maximum elevation angle. The S/N ratio of 16.5 dB and the Eb/No of 13.3 dB at the maximum elevation angle are obtained from the measurements. The measured result agrees well with the pre-analyzed system margin.

키워드

참고문헌

  1. T. Halt, "Smallsats by numbers: A discussion of the smallsats industry," SatMagzine, 2009.
  2. P. S. Kim, J.-G. Ryu, and W. J. Byun, "Research trends in global wireless communication technology based on LEO satellite communication network," Electronics and Telecommunications Trends, Vol. 35, No.5, pp.83-91, 2020. DOI: 10.22648/ETRI.2020.J.350507
  3. O. Kodheli, E. Lagunas, N. Maturo, and et. al., "Satellite communications in the new space era: a survey and future challenges," IEEE Communications Surveys & Tutorials, Vol.23, No.1, pp.70-109, 2021. DOI: 10.1109/COMST.2020.3028247
  4. G. Curzi, D. Modenini, and P. Tortota, "Large constellations of smal satellites: A survey of near future challenges and missions," Aerospace, Vol.7, No.9, pp.133, 2020. DOI: 10.3390/aerospace7090133
  5. S. Marcuccio, S. Ullo, M. Carminati, and O. Kanoun, "Smaller satellites, larger constellations: Trends and design issues for earth observation systems," IEEE Aerosp. Electron. Syst. Mag., Vol.34, No.10, pp.50-59, 2019. DOI: 10.1109/MAES.2019.2928612
  6. B. S. Reddy, P. V. Sitatraman, C. Arora, C. Sriharsha, and V. S. Kumar, "MEOSAR satellite ground station reflector antenna for search & rescue applications," 2018 IEEE MTT-S International Microwave and RF Conference (IMaRC), 2018. DOI: 10.1109/IMaRC.2018.8897539
  7. M. Boettcher, L. Leidig, and K. Sabine, "Design of a low-cost S/X dual-band satellite ground station for small satellite missions," Conf. of IAA/AAS Scitech, 2020.
  8. D. Sikri and R. M. Jayasuriya, "Multi-beam-phased array with full digital beamforming for SATCOM and 5G," Microwave Journal, Apr. 2019.
  9. F. Bongard, and et al., "A new aperture for switched-beam low-profile Ku-band mobile terminal array antennas," IEEE Antennas and Propagation Magazine, Vol.50, No.3, pp.289-300. 2012. DOI: 10.1109/MAP.2012.6294007
  10. J. Mayhan, "The calculation of the effective temperature of planar antennas in a plasma environment," IEEE Trans. Antennas and Propag., vol.18, no.1, pp.136-137, 1970. https://doi.org/10.1109/TAP.1970.1139634
  11. R. L. Li, B. Pan, T. Wu, K. Lim, J. Laskar, and M. M. Tentzeris, "A broadband printed dipole and a printed array for base station applications," International Symposium on 2008 IEEE Antennas and Propagation Society, pp.1-4, 2008. DOI: 10.1109/APS.2008.4619528
  12. Pratt, T. and Allnutt, J., Satellite Communications, 3rd Ed., John Wiley & Sons, 2020.