DOI QR코드

DOI QR Code

Ginsenoside compound K reduces the progression of Huntington's disease via the inhibition of oxidative stress and overactivation of the ATM/AMPK pathway

  • Hua, Kuo-Feng (Department of Pathology, Tri-Service General Hospital, National Defense Medical Center) ;
  • Chao, A-Ching (Department of Neurology, Kaohsiung Medical University Hospital) ;
  • Lin, Ting-Yu (Department of Animal Science and Biotechnology, Tunghai University) ;
  • Chen, Wan-Tze (Institute of Brain Science and Brain Research Center, National Yang Ming Chiao Tung University) ;
  • Lee, Yu-Chieh (Wellhead Biological Technology Corp.) ;
  • Hsu, Wan-Han (Wellhead Biological Technology Corp.) ;
  • Lee, Sheau-Long (Wellhead Biological Technology Corp.) ;
  • Wang, Hsin-Min (6-Shun Clinic) ;
  • Yang, Ding-I. (Institute of Brain Science and Brain Research Center, National Yang Ming Chiao Tung University) ;
  • Ju, Tz-Chuen (Department of Animal Science and Biotechnology, Tunghai University)
  • Received : 2021.07.11
  • Accepted : 2021.11.04
  • Published : 2022.07.01

Abstract

Background: Huntington's disease (HD) is a neurodegenerative disorder caused by the expansion of trinucleotide CAG repeat in the Huntingtin (Htt) gene. The major pathogenic pathways underlying HD involve the impairment of cellular energy homeostasis and DNA damage in the brain. The protein kinase ataxia-telangiectasia mutated (ATM) is an important regulator of the DNA damage response. ATM is involved in the phosphorylation of AMP-activated protein kinase (AMPK), suggesting that AMPK plays a critical role in response to DNA damage. Herein, we demonstrated that expression of polyQ-expanded mutant Htt (mHtt) enhanced the phosphorylation of ATM. Ginsenoside is the main and most effective component of Panax ginseng. However, the protective effect of a ginsenoside (compound K, CK) in HD remains unclear and warrants further investigation. Methods: This study used the R6/2 transgenic mouse model of HD and performed behavioral tests, survival rate, histological analyses, and immunoblot assays. Results: The systematic administration of CK into R6/2 mice suppressed the activation of ATM/AMPK and reduced neuronal toxicity and mHTT aggregation. Most importantly, CK increased neuronal density and lifespan and improved motor dysfunction in R6/2 mice. Conversely, CK enhanced the expression of Bcl2 protected striatal cells from the toxicity induced by the overactivation of mHtt and AMPK. Conclusions: Thus, the oral administration of CK reduced the disease progression and markedly enhanced lifespan in the transgenic mouse model (R6/2) of HD.

Keywords

Acknowledgement

We are very grateful to Drs. Elena Cattaneo and Yijuang Chern for providing the striatal cell lines (STHdh Q7and STHdhQ109). We would like to thank National Laboratory Animal Center for providing the B6CBAFI/J mice.

References

  1. Martin JB, Gusella JF. Huntington's disease. Pathogenesis and management. N Engl J Med 1986;315:1267-76. https://doi.org/10.1056/NEJM198611133152006
  2. Group., s D C R TH. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. The Huntington's Disease Collaborative Research Group. Cell 1993;72:971-83. https://doi.org/10.1016/0092-8674(93)90585-e
  3. Landles C, Bates GP. Huntingtin and the molecular pathogenesis of Huntington's disease. Fourth in molecular medicine review series. EMBO Rep 2004;5:958-63. https://doi.org/10.1038/sj.embor.7400250
  4. Buckley NJ, Johnson R, Zuccato C, Bithell A, Cattaneo E. The role of REST in transcriptional and epigenetic dysregulation in Huntington's disease. Neurobiol Dis 2010.
  5. Li H, Li SH, Yu ZX, Shelbourne P, Li XJ. Huntingtin aggregate-associated axonal degeneration is an early pathological event in Huntington's disease mice. J Neurosci 2001;21:8473-81. https://doi.org/10.1523/jneurosci.21-21-08473.2001
  6. Lin YS, Chen CM, Soong BW, Wu YR, Chen HM, Yeh WY, Wu DR, Lin YJ, Poon PW, Cheng ML, Wang CH, Chern Y. Dysregulated brain creatine kinase is associated with hearing impairment in mouse models of Huntington disease. J Clin Invest 2011;121:1519-23. https://doi.org/10.1172/JCI43220
  7. Chiang MC, Chen HM, Lee YH, Chang HH, Wu YC, Soong BW, Chen CM, Wu YR, Liu CS, Niu DM, Wu JY, Chen YT, Chern Y. Dysregulation of C/EBPalpha by mutant Huntingtin causes the urea cycle deficiency in Huntington's disease. Hum Mol Genet 2007;16:483-98. https://doi.org/10.1093/hmg/ddl481
  8. Klapstein GJ, Fisher RS, Zanjani H, Cepeda C, Jokel ES, Chesselet MF, Levine MS. Electrophysiological and morphological changes in striatal spiny neurons in R6/2 Huntington's disease transgenic mice. J Neurophysiol 2001;86:2667-77. https://doi.org/10.1152/jn.2001.86.6.2667
  9. Martindale D, Hackam A, Wieczorek A, Ellerby L, Wellington C, McCutcheon K, Singaraja R, Kazemi-Esfarjani P, Devon R, Kim SU, Bredesen DE, Tufaro F, Hayden MR. Length of huntingtin and its polyglutamine tract influences localization and frequency of intracellular aggregates. Nat Genet 1998;18:150-4. https://doi.org/10.1038/ng0298-150
  10. Vonsattel JP, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, Richardson Jr EP. Neuropathological classification of Huntington's disease. J Neuropathol Exp Neurol 1985;44:559-77. https://doi.org/10.1097/00005072-198511000-00003
  11. Long YC, Zierath JR. AMP-activated protein kinase signaling in metabolic regulation. J Clin Invest 2006;116:1776-83. https://doi.org/10.1172/JCI29044
  12. Stein SC, Woods A, Jones NA, Davison MD, Carling D. The regulation of AMP-activated protein kinase by phosphorylation. Biochem J 2000;345 Pt 3:437-43. https://doi.org/10.1042/bj3450437
  13. Hurley RL, Barre LK, Wood SD, Anderson KA, Kemp BE, Means AR, Witters LA. Regulation of AMP-activated protein kinase by multisite phosphorylation in response to agents that elevate cellular cAMP. J Biol Chem 2006;281:36662-72. https://doi.org/10.1074/jbc.M606676200
  14. Raney MA, Turcotte LP. Evidence for the involvement of CaMKII and AMPK in Ca2+-dependent signaling pathways regulating FA uptake and oxidation in contracting rodent muscle. J Appl Physiol 2008;104:1366-73. https://doi.org/10.1152/japplphysiol.01282.2007
  15. Tsuboi T, da Silva Xavier G, Leclerc I, Rutter GA. 5'-AMP-activated protein kinase controls insulin-containing secretory vesicle dynamics. J Biol Chem 2003;278:52042-51. https://doi.org/10.1074/jbc.m307800200
  16. Cai Y, Martens GA, Hinke SA, Heimberg H, Pipeleers D, Van de Casteele M. Increased oxygen radical formation and mitochondrial dysfunction mediate beta cell apoptosis under conditions of AMP-activated protein kinase stimulation. Free Radic Biol Med 2007;42:64-78. https://doi.org/10.1016/j.freeradbiomed.2006.09.018
  17. Ju TC, Chen HM, Chen YC, Chang CP, Chang C, Chern Y. AMPK-alpha1 functions downstream of oxidative stress to mediate neuronal atrophy in Huntington's disease. Biochim Biophys Acta 2014;1842:1668-80. https://doi.org/10.1016/j.bbadis.2014.06.012
  18. Giuliano P, De Cristofaro T, Affaitati A, Pizzulo GM, Feliciello A, Criscuolo C, De Michele G, Filla A, Avvedimento EV, Varrone S. DNA damage induced by polyglutamine-expanded proteins. Hum Mol Genet 2003;12:2301-9. https://doi.org/10.1093/hmg/ddg242
  19. Suzuki A, Kusakai G, Kishimoto A, Shimojo Y, Ogura T, Lavin MF, Esumi H. IGF-1 phosphorylates AMPK-alpha subunit in ATM-dependent and LKB1-independent manner. Biochem Biophys Res Commun 2004;324:986-92. https://doi.org/10.1016/j.bbrc.2004.09.145
  20. Fu X, Wan S, Lyu YL, Liu LF, Qi H. Etoposide induces ATM-dependent mitochondrial biogenesis through AMPK activation. PLoS One 2008;3:e2009. https://doi.org/10.1371/journal.pone.0002009
  21. Cho IH. Effects of Panax ginseng in neurodegenerative diseases. J Ginseng Res 2012;36:342-53. https://doi.org/10.5142/jgr.2012.36.4.342
  22. Cattaneo E, Conti L. Generation and characterization of embryonic striatal conditionally immortalized ST14A cells. J Neurosci Res 1998;53:223-34. https://doi.org/10.1002/(SICI)1097-4547(19980715)53:2<223::AID-JNR11>3.0.CO;2-7
  23. Ho CL, Li LH, Weng YC, Hua KF, Ju TC. Eucalyptus essential oils inhibit the lipopolysaccharide-induced inflammatory response in RAW264.7 macrophages through reducing MAPK and NF-kappaB pathways. BMC Complement Med Ther 2020;20:200. https://doi.org/10.1186/s12906-020-02999-0
  24. Ju TC, Chen HM, Lin JT, Chang CP, Chang WC, Kang JJ, Sun CP, Tao MH, Tu PH, Chang C, Dickson DW, Chern Y. Nuclear translocation of AMPK-alpha1 potentiates striatal neurodegeneration in Huntington's disease. J Cell Biol 2011;194:209-27. https://doi.org/10.1083/jcb.201105010
  25. Liu FC, Wu GC, Hsieh ST, Lai HL, Wang HF, Wang TW, Chern Y. Expression of type VI adenylyl cyclase in the central nervous system: implication for a potential regulator of multiple signals in different neurotransmitter systems. FEBS Lett 1998;436:92-8. https://doi.org/10.1016/S0014-5793(98)01098-9
  26. Traven A, Heierhorst J. SQ/TQ cluster domains: concentrated ATM/ATR kinase phosphorylation site regions in DNA-damage-response proteins. Bioessays 2005;27:397-407. https://doi.org/10.1002/bies.20204
  27. Burma S, Chen BP, Murphy M, Kurimasa A, Chen DJ. ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J Biol Chem 2001;276:42462-7. https://doi.org/10.1074/jbc.C100466200
  28. Sharma A, Singh K, Almasan A. Histone H2AX phosphorylation: a marker for DNA damage. Methods in molecular biology, vol. 920. NJ: Clifton; 2012. p. 613-26. https://doi.org/10.1007/978-1-61779-998-3_40
  29. Zhang Y, Ona VO, Li M, Drozda M, Dubois-Dauphin M, Przedborski S, Ferrante RJ, Friedlander RM. Sequential activation of individual caspases, and of alterations in Bcl-2 proapoptotic signals in a mouse model of Huntington's disease. J Neurochem 2003;87:1184-92. https://doi.org/10.1046/j.1471-4159.2003.02105.x
  30. Lu XH, Mattis VB, Wang N, Al-Ramahi I, van den Berg N, Fratantoni SA, Waldvogel H, Greiner E, Osmand A, Elzein K, Xiao J, Dijkstra S, de Pril R, Vinters HV, Faull R, Signer E, Kwak S, Marugan JJ, Botas J, Fischer DF, Svendsen CN, Munoz-Sanjuan I, Yang XW. Targeting ATM ameliorates mutant Huntingtin toxicity in cell and animal models of Huntington's disease. Sci Transl Med 2015;6. 268ra178. https://doi.org/10.1126/scitranslmed.3010523
  31. Bogdanov MB, Andreassen OA, Dedeoglu A, Ferrante RJ, Beal MF. Increased oxidative damage to DNA in a transgenic mouse model of Huntington's disease. J Neurochem 2001;79:1246-9. https://doi.org/10.1046/j.1471-4159.2001.00689.x
  32. Mao P, Reddy PH. Aging and amyloid beta-induced oxidative DNA damage and mitochondrial dysfunction in Alzheimer's disease: implications for early intervention and therapeutics. Biochim Biophys Acta 2011;1812:1359-70. https://doi.org/10.1016/j.bbadis.2011.08.005
  33. Coppede F, Migliore L. DNA damage and repair in Alzheimer's disease. Curr Alzheimer Res 2009;6:36-47. https://doi.org/10.2174/156720509787313970
  34. Anderson AJ, Su JH, Cotman CW. DNA damage and apoptosis in Alzheimer's disease: colocalization with c-Jun immunoreactivity, relationship to brain area, and effect of postmortem delay. J Neurosci 1996;16:1710-9. https://doi.org/10.1523/jneurosci.16-05-01710.1996
  35. Markus, A. A., Parsons, J. R., Roex, E. W., de Voogt, P. & Laane, R. W. Modeling aggregation and sedimentation of nanoparticles in the aquatic environment, Sci Total Environ. 506-507, 323-329. https://doi.org/10.1016/j.scitotenv.2014.11.056
  36. Sun Y, Connors KE, Yang DQ. AICAR induces phosphorylation of AMPK in an ATM-dependent, LKB1-independent manner. Mol Cell Biochem 2007;306:239-45. https://doi.org/10.1007/s11010-007-9575-6
  37. Sanli T, Steinberg GR, Singh G, Tsakiridis T. AMP-activated protein kinase (AMPK) beyond metabolism: a novel genomic stress sensor participating in the DNA damage response pathway. Cancer Biol Ther 2010;15:156-69. https://doi.org/10.4161/cbt.26726
  38. Wu CL, Qiang L, Han W, Ming M, Viollet B, He YY. Role of AMPK in UVB-induced DNA damage repair and growth control. Oncogene 2013;32:2682-9. https://doi.org/10.1038/onc.2012.279
  39. Vazquez-Manrique RP, Farina F, Cambon K, Dolores Sequedo M, Parker AJ, Millan JM, Weiss A, Deglon N, Neri C. AMPK activation protects from neuronal dysfunction and vulnerability across nematode, cellular and mouse models of Huntington's disease. Hum Mol Genet 2016;25:1043-58. https://doi.org/10.1093/hmg/ddv513
  40. Sanchis A, Garcia-Gimeno MA, Canada-Martinez AJ, Sequedo MD, Millan JM, Sanz P, Vazquez-Manrique RP. Metformin treatment reduces motor and neuropsychiatric phenotypes in the zQ175 mouse model of Huntington disease. Exp Mol Med 2019;51:1-16.
  41. Wu J, Jeong HK, Bulin SE, Kwon SW, Park JH, Bezprozvanny I. Ginsenosides protect striatal neurons in a cellular model of Huntington's disease. J Neurosci Res 2009;87:1904-12. https://doi.org/10.1002/jnr.22017
  42. Lee M, Ban JJ, Won BH, Im W, Kim M. Therapeutic potential of ginsenoside Rg3 and Rf for Huntington's disease. In Vitro Cell Dev Biol Anim 2021;57:641-8. https://doi.org/10.1007/s11626-021-00595-1
  43. Kim YC, Kim SR, Markelonis GJ, Oh TH. Ginsenosides Rb1 and Rg3 protect cultured rat cortical cells from glutamate-induced neurodegeneration. J Neurosci Res 1998;53:426-32. https://doi.org/10.1002/(SICI)1097-4547(19980815)53:4<426::AID-JNR4>3.0.CO;2-8
  44. Lian XY, Zhang Z, Stringer JL. Protective effects of ginseng components in a rodent model of neurodegeneration. Ann Neurol 2005;57:642-8. https://doi.org/10.1002/ana.20450
  45. Kim JH, Kim S, Yoon IS, Lee JH, Jang BJ, Jeong SM, Lee JH, Lee BH, Han JS, Oh S, Kim HC, Park TK, Rhim H, Nah SY. Protective effects of ginseng saponins on 3-nitropropionic acid-induced striatal degeneration in rats. Neuropharmacology 2005;48:743-56. https://doi.org/10.1016/j.neuropharm.2004.12.013
  46. Kim SE, Shim I, Chung JK, Lee MC. Effect of ginseng saponins on enhanced dopaminergic transmission and locomotor hyperactivity induced by nicotine. Neuropsychopharmacology 2006;31:1714-21. https://doi.org/10.1038/sj.npp.1300945
  47. Yang X, Chu SF, Wang ZZ, Li FF, Yuan YH, Chen NH. Ginsenoside Rg1 exerts neuroprotective effects in 3-nitropronpionic acid-induced mouse model of Huntington's disease via suppressing MAPKs and NF-kappaB pathways in the striatum. Acta Pharmacol Sin 2021;42:1409-21. https://doi.org/10.1038/s41401-020-00558-4
  48. Gao Y, Chu SF, Li JP, Zhang Z, Yan JQ, Wen ZL, Xia CY, Mou Z, Wang ZZ, He WB, Guo XF, Wei GN, Chen NH. Protopanaxtriol protects against 3-nitropropionic acid-induced oxidative stress in a rat model of Huntington's disease. Acta Pharmacol Sin 2015;36:311-22. https://doi.org/10.1038/aps.2014.107
  49. Jang M, Lee MJ, Kim CS, Cho IH. Korean red ginseng extract attenuates 3-nitropropionic acid-induced Huntington's-like symptoms. Evid Based Complement Alternat Med; 2013. p. 237207. 2013.
  50. Jang M, Choi JH, Chang Y, Lee SJ, Nah SY, Cho IH. Gintonin, a ginseng-derived ingredient, as a novel therapeutic strategy for Huntington's disease: activation of the Nrf2 pathway through lysophosphatidic acid receptors. Brain Behav Immun 2019;80:146-62. https://doi.org/10.1016/j.bbi.2019.03.001
  51. Lee MJ, Choi JH, Oh J, Lee YH, J G, Chang BJ, Nah SY, Cho IH. Rg3-enriched Korean Red Ginseng extract inhibits blood-brain barrier disruption in an animal model of multiple sclerosis by modulating expression of NADPH oxidase 2 and 4. J Ginseng Res 2021;45:433-41. https://doi.org/10.1016/j.jgr.2020.09.001
  52. Dong GZ, Jang EJ, Kang SH, Cho IJ, Park SD, Kim SC, Kim YW. Red ginseng abrogates oxidative stress via mitochondria protection mediated by LKB1-AMPK pathway. BMC Compl Alternative Med 2013;13:64. https://doi.org/10.1186/1472-6882-13-64
  53. Abdelazim A, Khater S, Ali H, Shalaby S, Afifi M, Saddick S, Alkaladi A, Almaghrabi OA. Panax ginseng improves glucose metabolism in streptozotocin-induced diabetic rats through 5' adenosine monophosphate kinase up-regulation. Saudi J Biol Sci 2019;26:1436-41. https://doi.org/10.1016/j.sjbs.2018.06.001
  54. Wang M, Jiang R, Liu J, Xu X, Sun G, Zhao D, Sun L. 20(s)ginseonsideRg3 modulation of AMPK/FoxO3 signaling to attenuate mitochondrial dysfunction in a dexamethasoneinjured C2C12 myotubebased model of skeletal atrophy in vitro. Mol Med Rep 2021;23.
  55. Li JB, Zhang R, Han X, Piao CL. Ginsenoside Rg1 inhibits dietary-induced obesity and improves obesity-related glucose metabolic disorders. Braz J Med Biol Res 2018;51:e7139. https://doi.org/10.1590/1414-431x20177139
  56. Perez-Severiano F, Rios C, Segovia J. Striatal oxidative damage parallels the expression of a neurological phenotype in mice transgenic for the mutation of Huntington's disease. Brain Res 2000;862:234-7. https://doi.org/10.1016/S0006-8993(00)02082-5
  57. Tabrizi SJ, Workman J, Hart PE, Mangiarini L, Mahal A, Bates G, Cooper JM, Schapira AH. Mitochondrial dysfunction and free radical damage in the Huntington R6/2 transgenic mouse. Ann Neurol 2000;47:80-6. https://doi.org/10.1002/1531-8249(200001)47:1<80::AID-ANA13>3.0.CO;2-K
  58. Segovia J, Perez-Severiano F. Oxidative damage in Huntington's disease. Methods in molecular biology (Clifton, NJ 2004;277:321-34.
  59. Song W, Guo Y, Jiang S, Wei L, Liu Z, Wang X, Su Y. Antidepressant effects of the ginsenoside metabolite compound K, assessed by behavioral despair test and chronic unpredictable mild stress model. Neurochem Res 2018;43:1371-82. https://doi.org/10.1007/s11064-018-2552-5
  60. Oh J, Kim JS. Compound K derived from ginseng: neuroprotection and cognitive improvement. Food Funct 2016;7:4506-15. https://doi.org/10.1039/C6FO01077F
  61. Song W, Wei L, Du Y, Wang Y, Jiang S. Protective effect of ginsenoside metabolite compound K against diabetic nephropathy by inhibiting NLRP3 inflammasome activation and NF-kappaB/p38 signaling pathway in high-fat diet/streptozotocin-induced diabetic mice. Int Immunopharm 2018;63:227-38. https://doi.org/10.1016/j.intimp.2018.07.027
  62. Bae MY, Cho JH, Choi IS, Park HM, Lee MG, Kim DH, Jang IS. Compound K, a metabolite of ginsenosides, facilitates spontaneous GABA release onto CA3 pyramidal neurons. J Neurochem 2010;114:1085-96. https://doi.org/10.1111/j.1471-4159.2010.06833.x
  63. Park JS, Shin JA, Jung JS, Hyun JW, Van Le TK, Kim DH, Park EM, Kim HS. Anti-inflammatory mechanism of compound K in activated microglia and its neuroprotective effect on experimental stroke in mice. J Pharmacol Exp Therapeut 2012;341:59-67. https://doi.org/10.1124/jpet.111.189035
  64. Guo Z, Kozlov S, Lavin MF, Person MD, Paull TT. ATM activation by oxidative stress, vol. 330. New York, NY: Science; 2010. p. 517-21.