DOI QR코드

DOI QR Code

Korean Red Ginseng attenuates Di-(2-ethylhexyl) phthalate-induced inflammatory response in endometrial cancer cells and an endometriosis mouse model

  • Song, Heewon (Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University) ;
  • Won, Ji Eun (Department of Immunology, School of Medicine, Konkuk University) ;
  • Lee, Jeonggeun (Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University) ;
  • Han, Hee Dong (Department of Immunology, School of Medicine, Konkuk University) ;
  • Lee, YoungJoo (Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University)
  • Received : 2020.07.22
  • Accepted : 2021.11.12
  • Published : 2022.07.01

Abstract

Background: Di-(2-ethylhexyl) phthalate (DEHP) is the most common endocrine disrupting chemical used as a plasticizer. DEHP is associated with the development of endometrium-related diseases through the induction of inflammation. The major therapeutic approaches against endometrial cancer and endometriosis involve the suppression of inflammatory response. Korean Red Ginseng (KRG) is a natural product with anti-inflammatory and anti-carcinogenic properties. Thus, the purpose of this study is to investigate the effects of KRG on DEHP-induced inflammatory response in endometrial cancer Ishikawa cells and a mouse model of endometriosis. Methods: RNA-sequencing was performed and analyzed on DEHP-treated Ishikawa cells in the presence and absence of KRG. The effects of KRG on DEHP-induced cyclooxygenase-2 (COX-2) mRNA levels in Ishikawa cells were determined by RT-qPCR. Furthermore, the effects of KRG on the extracellular signal-regulated kinases (ERKs) pathway, COX-2, and nuclear factor-kappa B (NF-kB) p65 after DEHP treatment of Ishikawa cells were evaluated by western blotting. In the mouse model, the severity of endometriosis induced by DEHP and changes in immunohistochemistry were used to assess the protective effect of KRG. Results: According to the RNA-sequencing data, DEHP-induced inflammatory response-related gene expression was downregulated by KRG. Moreover, KRG significantly inhibited DEHP-induced ERK1/2/NF-κB/COX-2 levels in Ishikawa cells. In the mouse model, KRG administration significantly inhibited ectopic endometriosis growth after DEHP-induced endometriosis. Conclusions: Overall, these results suggest that KRG may be a promising lead for the treatment of endometrial cancer and endometriosis via suppression of the inflammatory response.

Keywords

Acknowledgement

This research was supported 2018 grant from the Korean Society of Ginseng to YJL and HDH.

References

  1. Siegel RL, Miller KD, Jemal A. Cancer Statistics. CA Cancer J Clin 2017;67(1):7-30. 2017. https://doi.org/10.3322/caac.21387
  2. Liu SG, Wu XX, Hua T, Xin XY, Feng DL, Chi SQ, Wang XX, Wang HB. NLRP3 inflammasome activation by estrogen promotes the progression of human endometrial cancer. OncoTargets Ther 2019;12:6927-36. https://doi.org/10.2147/OTT.S218240
  3. Smuc T, Rizner TL. Aberrant pre-receptor regulation of estrogen and progesterone action in endometrial cancer. Mol Cell Endocrinol 2009;301(1-2):74-82. https://doi.org/10.1016/j.mce.2008.09.019
  4. Zaino R, Whitney C, Brady MF, DeGeest K, Burger RA, Buller RE. Simultaneously detected endometrial and ovarian carcinomas-a prospective clinicopathologic study of 74 cases: a gynecologic oncology group study. Gynecol Oncol 2001;83(2):355-62. https://doi.org/10.1006/gyno.2001.6400
  5. Bulletti C, Coccia ME, Battistoni S, Borini A. Endometriosis and infertility. J Assist Reprod Genet 2010;27(8):441-7. https://doi.org/10.1007/s10815-010-9436-1
  6. Shaco-Levy R, Sharabi S, Benharroch D, Piura B, Sion-Vardy N. Matrix metal-loproteinases 2 and 9, E-cadherin, and beta-catenin expression in endometriosis, low-grade endometrial carcinoma and non-neoplastic eutopic endometrium. Eur J Obstet Gynecol Reprod Biol 2008;139(2):226-32. https://doi.org/10.1016/j.ejogrb.2008.01.004
  7. Halden RU. Plastics and health risks. Annu Rev Publ Health 2010;31:179-94. https://doi.org/10.1146/annurev.publhealth.012809.103714
  8. Latini G. Monitoring phthalate exposure in humans. Clin Chim Acta 2005;361(1-2):20-9. https://doi.org/10.1016/j.cccn.2005.05.003
  9. Reddy BS, Rozati R, Reddy BV, Raman NV. Association of phthalate esters with endometriosis in Indian women. BJOG 2006;113(5):515-20. https://doi.org/10.1111/j.1471-0528.2006.00925.x
  10. Sun J, Chen B, Zhang LQ, Zhao D, Li SG. Phthalate ester concentrations in blood serum, urine and endometrial tissues of Chinese endometriosis patients. Int J Clin Exp Med 2016;9(2):3808-19.
  11. Kim SH, Chun S, Jang JY, Chae HD, Kim CH, Kang BM. Increased plasma levels of phthalate esters in women with advanced-stage endometriosis: a prospective case-control study. Fertil Steril 2011;95(1):357-9. https://doi.org/10.1016/j.fertnstert.2010.07.1059
  12. Kim SH, Cho S, Ihm HJ, Oh YS, Heo SH, Chun S, Im H, Chae HD, Kim CH, Kang BM. Possible role of phthalate in the pathogenesis of endometriosis: in vitro, animal, and human data. J Clin Endocrinol Metab 2015;100(12):E1502-11. https://doi.org/10.1210/jc.2015-2478
  13. Cobellis L, Latini G, De Felice C, Razzi S, Paris I, Ruggieri F, Mazzeo P, Petraglia F. High plasma concentrations of di-(2-ethylhexyl)-phthalate in women with endometriosis. Hum Reprod 2003;18(7):1512-5. https://doi.org/10.1093/humrep/deg254
  14. Park C, Lee J, Kong B, Park J, Song H, Choi K, Guon T, Lee Y. The effects of bisphenol A, benzyl butyl phthalate, and di(2-ethylhexyl) phthalate on estrogen receptor alpha in estrogen receptor-positive cells under hypoxia. Environ Pollut 2019;248:774-81. https://doi.org/10.1016/j.envpol.2019.02.069
  15. Cho YJ, Park SB, Han M. Di-(2-ethylhexyl)-phthalate induces oxidative stress in human endometrial stromal cells in vitro. Mol Cell Endocrinol 2015;407:9-17. https://doi.org/10.1016/j.mce.2015.03.003
  16. Josh MKS, Pradeep S, Adarsh VK, Amma KSV, Devi RS, Balachandran S, Sreejith MN, Jaleel UCA, Benjamin S. In silico evidences for the binding of phthalates onto human estrogen receptor alpha, beta subtypes and human estrogen-related receptor gamma. Mol Simulat 2014;40(5):408-17. https://doi.org/10.1080/08927022.2013.814131
  17. Somasundaram DB, Manokaran K, Selvanesan BC, Bhaskaran RS. Impact of di-(2-ethylhexyl) phthalate on the uterus of adult Wistar rats. Hum Exp Toxicol 2017;36(6):565-72. https://doi.org/10.1177/0960327116657601
  18. Chen FP, Chien MH. Lower concentrations of phthalates induce proliferation in human breast cancer cells. Climacteric 2014;17(4):377-84. https://doi.org/10.3109/13697137.2013.865720
  19. Kim JH. Analysis of the in vitro effects of di-(2-ethylhexyl) phthalate exposure on human uterine leiomyoma cells. Exp Ther Med 2018;15(6):4972-8. https://doi.org/10.3892/etm.2018.6040
  20. Wei N, Feng X, Xie Z, Zhang Y, Feng Y. Long-term di (2-ethylhexyl)-phthalate exposure promotes proliferation and survival of HepG2 cells via activation of NFkappaB. Toxicol Vitro 2017;42:86-92. https://doi.org/10.1016/j.tiv.2017.04.015
  21. Huang Q, Zhang H, Chen YJ, Chi YL, Dong S. The inflammation response to DEHP through PPARgamma in endometrial cells. Int J Environ Res Publ Health 2016;13(3).
  22. Bulun SE. Endometriosis. N Engl J Med. 2009;360(3):268-79. https://doi.org/10.1056/NEJMra0804690
  23. Ulukus M, Cakmak H, Arici A. The role of endometrium in endometriosis. J Soc Gynecol Invest 2006;13(7):467-76. https://doi.org/10.1016/j.jsgi.2006.07.005
  24. Han SJ, Jung SY, Wu SP, Hawkins SM, Park MJ, Kyo S, Qin J, Lydon JP, Tsai SY, Tsai MJ, et al. Estrogen receptor beta modulates apoptosis complexes and the inflammasome to drive the pathogenesis of endometriosis. Cell 2015;163(4):960-74. https://doi.org/10.1016/j.cell.2015.10.034
  25. Capobianco A, Rovere-Querini P. Endometriosis, a disease of the macrophage. Front Immunol 2013;4:9. https://doi.org/10.3389/fimmu.2013.00009
  26. Klemmt PAB, Starzinski-Powitz A. Molecular and cellular pathogenesis of endometriosis. Curr Womens Health Rev 2018;14(2):106-16. https://doi.org/10.2174/1573404813666170306163448
  27. Bloski T, Pierson R. Endometriosis and chronic pelvic pain: unraveling the mystery behind this complex condition. Nurs Womens Health 2008;12(5):382-95. https://doi.org/10.1111/j.1751-486X.2008.00362.x
  28. Bulun SE, Zeitoun KM, Takayama K, Sasano H. Estrogen biosynthesis in endometriosis: molecular basis and clinical relevance. J Mol Endocrinol 2000;25(1):35-42. https://doi.org/10.1677/jme.0.0250035
  29. Zheng Y, Liu X, Guo SW. Therapeutic potential of andrographolide for treating endometriosis. Hum Reprod 2012;27(5):1300-13. https://doi.org/10.1093/humrep/des063
  30. Seo SK, Hong Y, Yun BH, Chon SJ, Jung YS, Park JH, Cho S, Choi YS, Lee BS. Antioxidative effects of Korean Red Ginseng in postmenopausal women: a double-blind randomized controlled trial. J Ethnopharmacol 2014;154(3):753-7. https://doi.org/10.1016/j.jep.2014.04.051
  31. Hong M, Lee YH, Kim S, Suk KT, Bang CS, Yoon JH, Baik GH, Kim DJ, Kim MJ. Anti-inflammatory and antifatigue effect of Korean Red Ginseng in patients with nonalcoholic fatty liver disease. J Ginseng Res 2016;40(3):203-10. https://doi.org/10.1016/j.jgr.2015.07.006
  32. Kim MK, Lee SK, Park JH, Lee JH, Yun BH, Park JH, Seo SK, Cho S, Choi YS. Ginsenoside Rg3 decreases fibrotic and invasive nature of endometriosis by modulating miRNA-27b: in vitro and in vivo studies. Sci Rep 2017;7(1):17670. https://doi.org/10.1038/s41598-017-17956-0
  33. Huang R, Chen S, Zhao M, Li Z, Zhu L. Ginsenoside Rg3 attenuates endometriosis by inhibiting the viability of human ectopic endometrial stromal cells through the nuclear factor-kappaB signaling pathway. J Gynecol Obstet Hum Reprod 2020;49(1):101642. https://doi.org/10.1016/j.jogoh.2019.101642
  34. Zhang B, Zhou WJ, Gu CJ, Wu K, Yang HL, Mei J, Yu JJ, Hou XF, Sun JS, Xu FY, et al. The ginsenoside PPD exerts anti-endometriosis effects by suppressing estrogen receptor-mediated inhibition of endometrial stromal cell autophagy and NK cell cytotoxicity. Cell Death Dis 2018;9(5):574. https://doi.org/10.1038/s41419-018-0581-2
  35. Song H, Lee YJ. Inhibition of hypoxia-induced cyclooxygenase-2 by Korean Red Ginseng is dependent on peroxisome proliferator-activated receptor gamma. J Ginseng Res 2017;41(3):240-6. https://doi.org/10.1016/j.jgr.2016.04.001
  36. Lee J, Park J, Lee YY, Lee Y. Comparative transcriptome analysis of the protective effects of Korean Red Ginseng against the influence of bisphenol A in the liver and uterus of ovariectomized mice. J Ginseng Res 2020;44(3):519-26. https://doi.org/10.1016/j.jgr.2020.01.008
  37. Kim HJ, Choi JH, Hwang JH, Kim KS, Noh JR, Choi DH, Moon SJ, Kim HY, Kim SW, Choi S, et al. 3,5-Di-C-beta-D-glucopyranosyl phloroacetophenone, a major component of Melicope ptelefolia, suppresses fibroblast activation and alleviates arthritis in a mouse model: potential therapeutics for rheumatoid arthritis. Int J Mol Med 2018;42(5):2763-75. https://doi.org/10.3892/ijmm.2018.3849
  38. Kim EJ, Kwon KA, Lee YE, Kim JH, Kim SH, Kim JH. Korean Red Ginseng extract reduces hypoxia-induced epithelial-mesenchymal transition by repressing NF-kappaB and ERK1/2 pathways in colon cancer. J Ginseng Res 2018;42(3):288-97. https://doi.org/10.1016/j.jgr.2017.03.008
  39. Wang X, Su GY, Zhao C, Qu FZ, Wang P, Zhao YQ. Anticancer activity and potential mechanisms of 1C, a ginseng saponin derivative, on prostate cancer cells. J Ginseng Res 2018;42(2):133-43. https://doi.org/10.1016/j.jgr.2016.12.014
  40. Kim BB, Kim M, Park YH, Ko Y, Park JB. Short-term application of dexamethasone on stem cells derived from human gingiva reduces the expression of RUNX2 and beta-catenin. J Int Med Res 2017;45(3):993-1006. https://doi.org/10.1177/0300060517701035
  41. Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009;4(1):44-57. https://doi.org/10.1038/nprot.2008.211
  42. Greaves E, Cousins FL, Murray A, Esnal-Zufiaurre A, Fassbender A, Horne AW, Saunders PT. A novel mouse model of endometriosis mimics human phenotype and reveals insights into the inflammatory contribution of shed endometrium. Am J Pathol 2014;184(7):1930-9. https://doi.org/10.1016/j.ajpath.2014.03.011
  43. Bilotas M, Meresman G, Stella I, Sueldo C, Baranao RI. Effect of aromatase inhibitors on ectopic endometrial growth and peritoneal environment in a mouse model of endometriosis. Fertil Steril 2010;93(8):2513-8. https://doi.org/10.1016/j.fertnstert.2009.08.058
  44. Oeckinghaus A, Ghosh S. The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb Perspect Biol 2009;1(4):a000034. https://doi.org/10.1101/cshperspect.a000034
  45. Ryu YS, Kang KA, Piao MJ, Ahn MJ, Yi JM, Hyun YM, Kim SH, Ko MK, Park CO, Hyun JW. Particulate matter induces inflammatory cytokine production via activation of NFkappaB by TLR5-NOX4-ROS signaling in human skin keratinocyte and mouse skin. Redox Biol 2019;21:101080. https://doi.org/10.1016/j.redox.2018.101080
  46. Hwang HS, Kim JW, Oh SH, Song JH, Yang JW, Zang Y, Kim YH, Lee SE, Hwang YC, Koh JT. TLR5 activation induces expression of the proinflammatory mediator Urokinase Plasminogen Activator via NF-kappaB and MAPK signalling pathways in human dental pulp cells. Int Endod J 2019;52(10):1479-88. https://doi.org/10.1111/iej.13140
  47. Xie C, Xu X, Wang X, Wei S, Shao L, Chen J, Cai J, Jia L. Cyclooxygenase-2 induces angiogenesis in pancreatic cancer mediated by prostaglandin E2. Oncol Lett 2018;16(1):940-8.
  48. Upson K, Sathyanarayana S, De Roos AJ, Thompson ML, Scholes D, Dills R, Holt VL. Phthalates and risk of endometriosis. Environ Res 2013;126:91-7. https://doi.org/10.1016/j.envres.2013.07.003
  49. Painter JN, O'Mara TA, Morris AP, Cheng THT, Gorman M, Martin L, Hodson S, Jones A, Martin NG, Gordon S, et al. Genetic overlap between endometriosis and endometrial cancer: evidence from cross-disease genetic correlation and GWAS meta-analyses. Cancer Med 2018;7(5):1978-87. https://doi.org/10.1002/cam4.1445
  50. Mogensen JB, Kjaer SK, Mellemkjaer L, Jensen A. Endometriosis and risks for ovarian, endometrial and breast cancers: a nationwide cohort study. Gynecol Oncol 2016;143(1):87-92. https://doi.org/10.1016/j.ygyno.2016.07.095
  51. Kim YH, Kim SH, Lee HW, Chae HD, Kim CH, Kang BM. Increased viability of endometrial cells by in vitro treatment with di-(2-ethylhexyl) phthalate. Fertil Steril 2010;94(6):2413-6. https://doi.org/10.1016/j.fertnstert.2010.04.027
  52. Caballero I, Boyd J, Alminana C, Sanchez-Lopez JA, Basatvat S, Montazeri M, Maslehat Lay N, Elliott S, Spiller DG, White MR, et al. Understanding the dynamics of Toll-like Receptor 5 response to flagellin and its regulation by estradiol. Sci Rep 2017;7:40981. https://doi.org/10.1038/srep40981
  53. Tallant T, Deb A, Kar N, Lupica J, de Veer MJ, DiDonato JA. Flagellin acting via TLR5 is the major activator of key signaling pathways leading to NF-kappa B and proinflammatory gene program activation in intestinal epithelial cells. BMC Microbiol 2004;4:33. https://doi.org/10.1186/1471-2180-4-33
  54. Brown J, Wang H, Hajishengallis GN, Martin M. TLR-signaling networks: an integration of adaptor molecules, kinases, and cross-talk. J Dent Res 2011;90(4):417-27. https://doi.org/10.1177/0022034510381264
  55. Wang KH, Kao AP, Chang CC, Lee JN, Chai CY, Hou MF, Liu CM, Tsai EM. Modulation of tumorigenesis and oestrogen receptor-alpha expression by cell culture conditions in a stem cell-derived breast epithelial cell line. Biol Cell 2010;102(3):159-72. https://doi.org/10.1042/BC20090132
  56. Hasegawa K, Ohashi Y, Ishikawa K, Yasue A, Kato R, Achiwa Y, Nishio E, Udagawa Y. Expression of cyclooxygenase-2 in uterine endometrial cancer and anti-tumor effects of a selective COX-2 inhibitor. Int J Oncol 2005;26(5):1419-28.
  57. Onda T, Ban S, Shimizu M. CD10 is useful in demonstrating endometrial stroma at ectopic sites and in confirming a diagnosis of endometriosis. J Clin Pathol 2003;56(1):79. https://doi.org/10.1136/jcp.56.1.79
  58. Bacci M, Capobianco A, Monno A, Cottone L, Di Puppo F, Camisa B, Mariani M, Brignole C, Ponzoni M, Ferrari S, et al. Macrophages are alternatively activated in patients with endometriosis and required for growth and vascularization of lesions in a mouse model of disease. Am J Pathol 2009;175(2):547-56. https://doi.org/10.2353/ajpath.2009.081011
  59. Haber E, Danenberg HD, Koroukhov N, Ron-El R, Golomb G, Schachter M. Peritoneal macrophage depletion by liposomal bisphosphonate attenuates endometriosis in the rat model. Hum Reprod 2009;24(2):398-407. https://doi.org/10.1093/humrep/den375