DOI QR코드

DOI QR Code

Selection of suitable reference gene for gene expression studies of porcine ovaries under different conditions in quantitative reverse transcription polymerase chain reaction assay

  • Kim, Hwan-Deuk (College of Veterinary Medicine, Kyungpook National University) ;
  • Jeon, Hye-Jin (College of Veterinary Medicine, Kyungpook National University) ;
  • Jang, Min (College of Veterinary Medicine, Kyungpook National University) ;
  • Bae, Seul-Gi (College of Veterinary Medicine, Kyungpook National University) ;
  • Yun, Sung-Ho (College of Veterinary Medicine, Kyungpook National University) ;
  • Han, Jee-Eun (College of Veterinary Medicine, Kyungpook National University) ;
  • Kim, Seung-Joon (College of Veterinary Medicine, Kyungpook National University) ;
  • Lee, Won-Jae (College of Veterinary Medicine, Kyungpook National University)
  • 투고 : 2022.06.11
  • 심사 : 2022.06.14
  • 발행 : 2022.06.30

초록

The ovary undergoes substantial physiological changes along with estrus phase to mediate negative/positive feedback to the upstream reproductive tissues and to play a role in producing a fertilizable oocyte in the developing follicles. However, the disorder of estrus cycle in female can lead to diseases, such as cystic ovary which is directly associated with decline of overall reproductive performance. In gene expression studies of ovaries, quantitative reverse transcription polymerase chain reaction (qPCR) assay has been widely applied. During this assay, although normalization of target genes against reference genes (RGs) has been indispensably conducted, the expression of RGs is also variable in each experimental condition which can result in false conclusion. Because the understanding for stable RG in porcine ovaries was still limited, we attempted to assess the stability of RGs from the pool of ten commonly used RGs (18S, B2M, PPIA, RPL4, SDHA, ACTB, GAPDH, HPRT1, YWHAZ, and TBP) in the porcine ovaries under different estrus phase (follicular and luteal phase) and cystic condition, using stable RG-finding programs (geNorm, Normfinder, and BestKeeper). The significant (p < 0.01) differences in Ct values of RGs in the porcine ovaries under different conditions were identified. In assessing the stability of RGs, three programs comprehensively agreed that TBP and YWHAZ were suitable RGs to study porcine ovaries under different conditions but ACTB and GAPDH were inappropriate RGs in this experimental condition. We hope that these results contribute to plan the experiment design in the field of reproductive physiology in pigs as reference data.

키워드

과제정보

This work was supported by a grant from the National Research Foundation (NRF) of Korea, funded by the government of the Republic of Korea (NRF-2020R1F1A1076723).

참고문헌

  1. Archanco M, Muruzabal FJ, Llopiz D, Garayoa M, GomezAmbrosi J, Fruhbeck G, Burrell MA 2003. Leptin expression in the rat ovary depends on estrous cycle. J. Histochem. Cytochem. 51:1269-1277. https://doi.org/10.1177/002215540305101003
  2. Castagna CD, Peixoto CH, Bortolozzo FP, Wentz I, Neto GB, Ruschel F. 2004. Ovarian cysts and their consequences on the reproductive performance of swine herds. Anim. Reprod. Sci. 81:115-123. https://doi.org/10.1016/j.anireprosci.2003.08.004
  3. Cech S and Dolezel R. 2007. Treatment of ovarian cysts in sows - a field trial. Vet. Med. (Praha) 52:413-418. https://doi.org/10.17221/1995-VETMED
  4. Choi KH, Lee DK, Oh JN, Kim SH, Lee M, Jeong J, Choe GC, Lee CK. 2020. Generation of neural progenitor cells from pig embryonic germ cells. J. Anim. Reprod. Biotechnol. 35:42-49. https://doi.org/10.12750/JARB.35.1.42
  5. Cinar MU, Islam MA, Proll M, Kocamis H, Tholen E, Tesfaye D, Looft C, Schellander K, Uddin MJ. 2013. Evaluation of suitable reference genes for gene expression studies in porcine PBMCs in response to LPS and LTA. BMC Res. Notes 6:56. https://doi.org/10.1186/1756-0500-6-56
  6. Cinar MU, Islam MA, Uddin MJ, Tholen E, Tesfaye D, Looft C, Schellander K. 2012. Evaluation of suitable reference genes for gene expression studies in porcine alveolar macrophages in response to LPS and LTA. BMC Res. Notes 5:107. https://doi.org/10.1186/1756-0500-5-107
  7. De los Reyes M, Palomino J, Parraguez VH, Ramirez F. 2017. Analysis of LH receptor in canine ovarian follicles throughout the estrous cycle. Theriogenology 93:71-77. https://doi.org/10.1016/j.theriogenology.2017.01.029
  8. Gan Y, Ye F, He XX. 2020. The role of YWHAZ in cancer: a maze of opportunities and challenges. J. Cancer 11:2252-2264. https://doi.org/10.7150/jca.41316
  9. Gu YR, Li MZ, Zhang K, Chen L, Jiang AA, Wang JY, Li XW. 2011. Evaluation of endogenous control genes for gene expression studies across multiple tissues and in the specific sets of fatand muscle-type samples of the pig. J. Anim. Breed. Genet. 128:319-325. https://doi.org/10.1111/j.1439-0388.2011.00920.x
  10. Han NR, Baek S, Lee Y, Lee J, Yun JI, Lee E, Lee ST. 2020. Effects of in vitro culture period of reconstructed embryos and genetic background of feeder cells on establishment of embryonic stem cells derived from somatic cell nuclear transfer blastocysts in pigs. J. Anim. Reprod. Biotechnol. 35:86-93. https://doi.org/10.12750/JARB.35.1.86
  11. Hassanpour H, Aghajani Z, Bahadoran S, Farhadi N, Nazari H, Kaewduangta W. 2019. Identification of reliable reference genes for quantitative real-time PCR in ovary and uterus of laying hens under heat stress. Stress 22:387-394. https://doi.org/10.1080/10253890.2019.1574294
  12. Hwangbo Y, Cheong HT, Park CK. 2019. Changes of plasminogen activator activity under heat stress condition in porcine endometrium. J. Anim. Reprod. Biotechnol. 34:240-246. https://doi.org/10.12750/JARB.34.3.240
  13. Hwang JC, Kim HD, Park BJ, Jeon RH, Baek SM, Lee SW, Jang M, Bae SG, Yun SH, Park JK, Kwon YS, Kim SJ, Lee WJ. 2021. Immobilization stress increased cytochrome P450 1A2 (CYP1A2) expression in the ovary of rat. J. Anim. Reprod. Biotechnol. 36:9-16. https://doi.org/10.12750/JARB.36.1.9
  14. Hwang JC, Park BJ, Kim HD, Baek SM, Lee SW, Jeon RH, Jang M, Bae SG, Yun SH, Park JK, Kwon YS, Kim SJ, Lee WJ. 2020. Immunohistological expression of cytochrome P450 1A2 (CYP1A2) in the ovarian follicles of prepubertal and pubertal rat. J. Anim. Reprod. Biotechnol. 35:329-337. https://doi.org/10.12750/JARB.35.4.329
  15. Katarzynska-Banasik D, Grzesiak M, Sechman A. 2017. Selection of reference genes for quantitative real-time PCR analysis in chicken ovary following silver nanoparticle treatment. Environ. Toxicol. Pharmacol. 56:186-190. https://doi.org/10.1016/j.etap.2017.09.011
  16. Kim D, Kim HD, Son Y, Kim S, Jang M, Bae SG, Yun SH, Kim SJ, Lee WJ. 2021. Establishment of normal reference intervals in serum biochemical parameters of domestic sows in Korea. J. Anim. Reprod. Biotechnol. 36:261-269. https://doi.org/10.12750/JARB.36.4.261
  17. Kim JM, Park JE, Yoo I, Han J, Kim N, Lim WJ, Cho ES, Choi B, Choi S, Kim TH, te Pas MFW, Ka H, Lee KT. 2018. Integrated transcriptomes throughout swine oestrous cycle reveal dynamic changes in reproductive tissues interacting networks. Sci. Rep. 8:5436. https://doi.org/10.1038/s41598-018-23655-1
  18. Kolkova Z, Arakelyan A, Casslen B, Hansson S, Kriegova E. 2013. Normalizing to GADPH jeopardises correct quantification of gene expression in ovarian tumours - IPO8 and RPL4 are reliable reference genes. J. Ovarian Res. 6:60. https://doi.org/10.1186/1757-2215-6-60
  19. Lee WJ, Jang SJ, Lee SC, Park JS, Jeon RH, Subbarao RB, Bharti D, Shin JK, Park BW, Rho GJ. 2017. Selection of reference genes for quantitative real-time polymerase chain reaction in porcine embryos. Reprod. Fertil. Dev. 29:357-367. https://doi.org/10.1071/rd14393
  20. Lee WJ, Jeon RH, Jang SJ, Park JS, Lee SC, Subbarao RB, Lee SL, Park BW, King WA, Rho GJ. 2015. Selection of reference genes for quantitative gene expression in porcine mesenchymal stem cells derived from various sources along with differentiation into multilineages. Stem Cells Int. 2015:235192. https://doi.org/10.1155/2015/235192
  21. Li Q, Domig KJ, Ettle T, Windisch W, Mair C, Schedle K. 2011. Evaluation of potential reference genes for relative quantification by RT-qPCR in different porcine tissues derived from feeding studies. Int. J. Mol. Sci. 12:1727-1734. https://doi.org/10.3390/ijms12031727
  22. Li YL, Ye F, Hu Y, Lu WG, Xie X. 2009. Identification of suitable reference genes for gene expression studies of human serous ovarian cancer by real-time polymerase chain reaction. Anal. Biochem. 394:110-116. https://doi.org/10.1016/j.ab.2009.07.022
  23. Lu N, Li M, Lei H, Jiang X, Tu W, Lu Y, Xia D. 2017. Butyric acid regulates progesterone and estradiol secretion via cAMP signaling pathway in porcine granulosa cells. J. Steroid Biochem. Mol. Biol. 172:89-97. https://doi.org/10.1016/j.jsbmb.2017.06.004
  24. Lv Y, Zhao SG, Lu G, Leung CK, Xiong ZQ, Su XW, Ma JL, Chan WY, Liu HB. 2017. Identification of reference genes for qRTPCR in granulosa cells of healthy women and polycystic ovarian syndrome patients. Sci. Rep. 7:6961. https://doi.org/10.1038/s41598-017-07346-x
  25. Martinez-Giner M, Noguera JL, Balcells I, Fernandez-Rodriguez A, Pena RN. 2013. Selection of internal control genes for real-time quantitative PCR in ovary and uterus of sows across pregnancy. PLoS One 8:e66023. https://doi.org/10.1371/journal.pone.0066023
  26. Nygard AB, Jorgensen CB, Cirera S, Fredholm M. 2007. Selection of reference genes for gene expression studies in pig tissues using SYBR green qPCR. BMC Mol. Biol. 8:67. https://doi.org/10.1186/1471-2199-8-67
  27. Picazo RA, Garcia Ruiz JP, Santiago Moreno J, Gonzalez de Bulnes A, Munoz J, Silvan G, Lorenzo PL, Illera JC. 2004. Cellular localization and changes in expression of prolactin receptor isoforms in sheep ovary throughout the estrous cycle. Reproduction 128:545-553. https://doi.org/10.1530/rep.1.00343
  28. Rekawiecki R and Kotwica J. 2007. Molecular regulation of progesterone synthesis in the bovine corpus luteum. Vet. Med. (Praha) 52:405-412. https://doi.org/10.17221/1996-VETMED
  29. Svobodova K, Bilek K, Knoll A. 2008. Verification of reference genes for relative quantification of gene expression by real-time reverse transcription PCR in the pig. J. Appl. Genet. 49: 263-265. https://doi.org/10.1007/BF03195623
  30. Terenina E, Fabre S, Bonnet A, Monniaux D, Robert-Granie C, SanCristobal M, Sarry J, Vignoles F, Gondret F, Monget P, Tosser-Klopp G. 2017. Differentially expressed genes and gene networks involved in pig ovarian follicular atresia. Physiol. Genomics 49:67-80. https://doi.org/10.1152/physiolgenomics.00069.2016
  31. Toms D, Pan B, Li J. 2018. Endocrine regulation in the ovary by microRNA during the estrous cycle. Front. Endocrinol. (Lausanne) 8:378. https://doi.org/10.3389/fendo.2017.00378
  32. Uddin MJ, Cinar MU, Tesfaye D, Looft C, Tholen E, Schellander K. 2011. Age-related changes in relative expression stability of commonly used housekeeping genes in selected porcine tissues. BMC Res. Notes 4:441. https://doi.org/10.1186/1756-0500-4-441
  33. Wang J, Wang Y, Wang H, Hao X, Wu Y, Guo J. 2014. Selection of reference genes for gene expression studies in porcine whole blood and peripheral blood mononuclear cells under polyinosinic:polycytidylic acid stimulation. Asian-Australas. J. Anim. Sci. 27:471-478. https://doi.org/10.5713/ajas.2013.13471
  34. Xiang-Hong J, Yan-Hong Y, Han-Jin X, Li-long A, Ying-Mei X, Pei-Rong J, Ming L. 2011. Selection of reference genes for gene expression studies in PBMC from Bama miniature pig under heat stress. Vet. Immunol. Immunopathol. 144:160-166. https://doi.org/10.1016/j.vetimm.2011.07.004
  35. Yang S, Zhou X, Pei Y, Wang H, He K, Zhao A. 2018. Identification of differentially expressed genes in porcine ovaries at proestrus and estrus stages using RNA-Seq technique. Biomed Res. Int. 2018:9150723.