DOI QR코드

DOI QR Code

Recovery of Ammonia Nitrogen using Gas-permeable Membranes

기체투과막을 이용한 암모니아성 질소 회수방안

  • Lee, Sang-hun (Department of Environmental Science, Keimyung University) ;
  • Chae, Sang Yeop (Department of Environmental Science, Keimyung University)
  • Received : 2022.06.16
  • Accepted : 2022.06.28
  • Published : 2022.06.30

Abstract

Ammonia nitrogen can be effectively recovered from livestock manure waste, etc. by using the gas permeable membrane technology. In this case, ammonia gas in the waste passes through the pores in one-side of membrane, impregnated in waste, and then reach the opposite side of the membrane. The permeated ammonia gas molecules are captured and recovered by acid (such as sulfuric acid) in the solution existing on the opposite side of the membrane. In order to improve ammonia nitrogen removals in the inlet part, high pH should be maintained in the feed waste including ammonia nitrogen to recover, which requires the cost of the chemical. To resolve this issue, previous studies tested various methods, for example, utilization of cheap calcium hydroxide or aeration together with inhibition of unwanted nitrification. The gas permeable membranes used for the recovery of ammonia nitrogen may be characterized, not only by proper heat and chemical resistance, but also by hydrophobicity, allowing selective ammonia gas permeation through the hydrophobic membrane pores. Future research should consider the relevant pilot or upscale processes using on-site wastes with various properties, and identify the optimal design/operation conditions as well as economic feasibility improvement plans.

기체투과막 기술을 이용하여 가축분뇨 폐기물 등으로부터 암모니아성 질소를 효과적으로 회수할 수 있다. 이는 폐기물 내 암모니아 기체가 폐기물에 함침된 기체투과막의 미세공극을 투과하여 막반대편에 도달하게 된다. 투과된 암모니아 기체분자는 막 반대편에 존재하는 용액 내 황산 등 산에 의해 포획 및 회수된다. 막 유입부 내 암모니아성 질소 제거 효과를 높이기 위해서는 우선 유입 폐기물 내 pH를 높게 유지해야 하는데 pH 상승에 필요한 염기성 약품 투입비용이 문제가 될 수 있다. 기존 연구에서는 보다 저렴한 소석회 투입하거나 폭기 혹은 질산화억제를 통해 높은 pH를 효과적으로 유지시키는 방안이 거론되고 있다. 한편 암모니아성 질소 회수에 쓰이는 기체투과막의 재질은 적절한 내열성이나 내화학성 이외에도 소수성을 띈다는 특징이 있으며 이를 통해 막기공을 통해 암모니아 기체를 선택적으로 투과시킬 수 있다. 향후 연구에서는 다양한 성상을 가진 현장 폐기물을 이용하여 실증 Test를 수행하고 이를 기반으로 최적 설계/운전 조건 규명 및 경제성 제고 방안을 수립하여야 한다.

Keywords

Acknowledgement

본 연구는 대구녹색환경지원센터의 지원을 받아 수행되었다(2022년도 연구사업과제 환경기술개발연구과제명 - 분뇨 폐기물내 암모니아성 악취저감을 위한 현장 맞춤형 진단 및 관리 Software program 개발).

References

  1. KEI (Korea Environmental Institute), "Management Strategies to Reduce PM2.5 Emission: Emphasis-Ammonia", KEI fundamental research report (Korean), 1-89 (2017).
  2. A. Valera-Medina, H. Xiao, M. Owen-Jones, W. I. F. David, and P. J. Bowen, "Ammonia for power", Prog. Energy Combust. Sci., 69, 63-102 (2018). https://doi.org/10.1016/j.pecs.2018.07.001
  3. B. Pandey and L. Chen, "Technologies to recover nitrogen from livestock manure - A review", Sci. Total Environ., 784, 147098 (2021). https://doi.org/10.1016/j.scitotenv.2021.147098
  4. S. Xiang, Y. Liu, G. Zhang, R. Ruan, Y. Wang, X. Wu, H. Zheng, Q. Zhang, and L. Cao, "New progress of ammonia recovery during ammonia nitrogen removal from various wastewaters", World J. Microbiol. Biotechnol., 36, 144 (2020). https://doi.org/10.1007/s11274-020-02921-3
  5. Y. T. Ahn, Y. H. Hwang, and H. S. Shin, "Application of PTFE membrane for ammonia removal in a membrane contactor", Water Sci. Technol., 63, 2944-2948 (2011). https://doi.org/10.2166/wst.2011.141
  6. B. Molinuevo-Salces, B. Riano, M. B. Vanotti, and M.C Garcia-Gonzalez, "Gas-permeable membrane technology coupled with anaerobic digestion for swine manure treatment", Front. Sustain. Food Syst., 2, 25 (2018). https://doi.org/10.3389/fsufs.2018.00025
  7. M. C. Garcia-Gonzalez and M. B. Vanotti, "Recovery of ammonia from swine manure using gas-permeable membranes: effect of waste strength and pH", Waste Manag., 38, 455-461 (2015). https://doi.org/10.1016/j.wasman.2015.01.021
  8. S. Daguerre-Martini, M. B. Vanotti, M. Rodriguez-Pastor, A. Rosal, and R. Moral, "Nitrogen recovery from wastewater using gas-permeable membranes: Impact of inorganic carbon content and natural organic matter", Water Res., 137, 201-210 (2018). https://doi.org/10.1016/j.watres.2018.03.013
  9. P. J. Dube, M. B. Vanotti, A. A. Szogi, and M. C. Garcia-Gonzalez, "Enhancing recovery of ammonia from swine manure anaerobic digester effluent using gas-permeable membrane technology", Waste Manag., 49, 372-37 (2016). https://doi.org/10.1016/j.wasman.2015.12.011
  10. M. J. Rothrock Jr., A. A. Szogi, and M. B. Vanotti, "Recovery of ammonia from poultry litter using gas-permeable membranes", Trans. ASABE, 53, 1267-1275 (2010). https://doi.org/10.13031/2013.32591
  11. M. Soto-Herranz, M. Sanchez-Bascones, J. M. Antolin-Rodriguez, D. Conde-Cid, and M. B. Vanotti, "Effect of the type of gas-permeable membrane in ammonia recovery from air", Environments, 6, 70 (2019). https://doi.org/10.3390/environments6060070
  12. A. A. Szogi, M. B. Vanotti, and M. J. Rothrock, "Gaseous Ammonia Removal System", U.S. Patent No. 8,906,332. Washington, DC: U.S. Patent and Trademark Office (2014).
  13. L. Zeng, C. Mangan, and X. Li, "Ammonia recovery from anaerobically digested cattle manure by steam stripping", Water Sci. Technol., 54, 137-145 (2006).
  14. L. K. Wang, Y. T. Hung, and N. K. Shammas, "Advanced physicochemical treatment processes", Handbook of Environmental Engineering. vol. 4, The Humana Press Inc., Totowa, NJ, USA (2006).
  15. S. P. Munasinghe-Arachchige, I. S. A. Abeysiriwardana-Arachchige, H. M. K. Delanka-Pedige, P. Cooke, and N. Nirmalakhandan, "Nitrogen-fertilizer recovery from urban sewage via gas permeable membrane: Process analysis, modeling, and intensification", Chem. Eng. J., 411, 128443 (2021). https://doi.org/10.1016/j.cej.2021.128443
  16. A. Hasanoglu, J. Romero, B. Perez, and A. Plaza, "Ammonia removal from wastewater streams through membrane contactors: experimental and theoretical analysis of operation parameters and configuration", Chem. Eng. J., 160, 530-537 (2010). https://doi.org/10.1016/j.cej.2010.03.064
  17. F. Nosratinia, M. Ghadiri, and H. Ghahremani, "Mathematical modeling and numerical simulation of ammonia removal from wastewaters using membrane contactors", J. Ind. Eng. Chem., 20, 2958-2963 (2014). https://doi.org/10.1016/j.jiec.2013.10.065
  18. J. Nagy, J. Kaljunen, and A. J. Toth, "Nitrogen recovery from wastewater and human urine with hydrophobic gas separation membrane: experiments and modelling", Chem., 73, 1903-1915 (2019).
  19. M. J. Rothrock Jr., A. A. Szogi, and M. B. Vanotti, "Recovery of ammonia from poultry litter using flat gas permeable membranes", Waste Manag., 33, 1531-1538 (2013). https://doi.org/10.1016/j.wasman.2013.03.011
  20. M. C. Garcia-Gonzalez, M. B. Vanotti, and A. A. Szogi, "Recovery of ammonia from anaerobically digested manure using gas-permeable membranes", Sci. Agric., 73, 434-438 (2016). https://doi.org/10.1590/0103-9016-2015-0159
  21. A. Zarebska, D. Romero Nieto, K. V. Christensen, L. Fjerbaek Sotoft, and B. Norddahl, "Ammonium fertilizers production from manure: a critical review", Crit. Rev. Environ. Sci. Technol., 45, 1469-1521 (2015). https://doi.org/10.1080/10643389.2014.955630
  22. W. Lee, S. An, and Y. Choi, "Ammonia harvesting via membrane gas extraction at moderately alkaline pH: a step toward net-profitable nitrogen recovery from domestic wastewater", Chem. Eng. J., 405, 126662 (2021). https://doi.org/10.1016/j.cej.2020.126662
  23. M. C. Garcia-Gonzalez, M. B. Vanotti, and A. A. Szogi, "Recovery of ammonia from swine manure using gas-permeable membranes: effect of aeration", J. Environ. Manage., 152, 19-26 (2015). https://doi.org/10.1016/j.jenvman.2015.01.013
  24. P. J. Dube, M. B. Vanotti, A. A. Szogi, and M. C. Garcia-Gonzalez, "Enhancing recovery of ammonia from swine manure anaerobic digester effluent using gas-permeable membrane technology", Waste Manag., 49, 372-377 (2016). https://doi.org/10.1016/j.wasman.2015.12.011
  25. M. B. Vanotti, P. J. Dube, A. A. Szogi, and M. C. Garcia-Gonzalez, "Recovery of ammonia and phosphate minerals from swine wastewater using gaspermeable membranes", Water Res., 112, 137-146 (2017). https://doi.org/10.1016/j.watres.2017.01.045
  26. J. de. S. O. Filho, S. Daguerre-Martini, M. B. Vanotti, J. Saez-Tovar, A. Rosal, M. D. PerezMurcia, M. A. Bustamante, and R. Moral, "Recovery of ammonia in raw and codigested swine manure using gas-permeable membrane technology", Front. Sustain. Food Syst., 2, 30 (2018). https://doi.org/10.3389/fsufs.2018.00030
  27. B. Riano, B. Molinuevo-Salces, M. B. Vanotti, and M. Cruz Garcia-Gonzalez, "Ammonia Recovery from Digestate Using Gas-Permeable Membranes: A Pilot-Scale Study", Environments., 8, 133 (2021). https://doi.org/10.3390/environments8120133
  28. M. Darestani, V. Haigh, S. J. Couperthwaite, G. J. Millar, and L. D. Nghiem, "Hollow fibre membrane contactors for ammonia recovery: Current status and future developments", J. Environ. Chem. Eng., 5, 1349-1359 (2017). https://doi.org/10.1016/j.jece.2017.02.016
  29. X. Tan, S. P. Tan, W. K. Teo, and K. Li, "Polyvinylidene fluoride (PVDF) hollow fibre membranes for ammonia removal from water", J. Membr. Sci., 271, 59-68 (2006). https://doi.org/10.1016/j.memsci.2005.06.057
  30. M. R. Adam, T. Matsuura, M. H. D. Othman, M. H. Puteh, M. A. B. Pauzan, A. F. Ismail, A. Mustafa, M. A. Rahman, J. Jaafar, and M. S. Abdullah, "Feasibility study of the hybrid adsorptive hollow fibre ceramic membrane (HFCM) derived from natural zeolite for the removal of ammonia in wastewater", Process Saf. Environ. Prot., 122, 378-385 (2019). https://doi.org/10.1016/j.psep.2018.12.003
  31. I. A. Talalaj, "Removal of nitrogen compounds from landfill leachate using reverse osmosis with leachate stabilization in a buffer tank", Environ. Technol., 36, 1091-1097 (2015). https://doi.org/10.1080/09593330.2014.982207
  32. N. van Linden, Y. Wang, E. Sudholter, H. Spanjers, and J. B. van Lier, "Selectivity of vacuum ammonia stripping using porous gas-permeable and dense pervaporation membranes under various hydraulic conditions and feed water compositions", J. Membr. Sci., 642, 120005 (2022). https://doi.org/10.1016/j.memsci.2021.120005