DOI QR코드

DOI QR Code

Ceramic Based Photocatalytic Membrane for Wastewater Treatment: A Review

폐수처리를 위한 세라믹 기반 광촉매 분리막: 총설

  • Kwak, Yeonsoo (Energy and Environmental Science and Engineering, Integrated Science and Engineering Division, Underwood International College, Yonsei University) ;
  • Patel, Rajkumar (Energy and Environmental Science and Engineering, Integrated Science and Engineering Division, Underwood International College, Yonsei University)
  • 곽연수 (연세대학교 언더우드학부 융합과학공학부 에너지환경융합전공) ;
  • 라즈쿠마 파텔 (연세대학교 언더우드학부 융합과학공학부 에너지환경융합전공)
  • Received : 2022.05.30
  • Accepted : 2022.06.23
  • Published : 2022.06.30

Abstract

Membrane separation provides various advantages including cost effectiveness and high efficiency over traditional wastewater treatment methods such as flocculation and adsorption. However, the effectiveness of membrane separation greatly declines due to membrane fouling, where pollutants are accumulated on the membrane surface. Among different groups of membranes, ceramic membranes can provide good antifouling properties due to its hydrophilicity and chemical stability. In addition, composite membranes such as graphene oxide modified membranes can help prevent membrane fouling. Recently, hybrid photocatalytic membranes have been proposed as a solution to prevent membrane fouling and provide synergetic effects. Membrane separation can solve the disadvantages of photocatalytic oxidation such as low reutilization rate, while photocatalytic oxidation can help reduce membrane fouling.

막여과는 흡착, 응집 등의 폐수 처리 방법에 비교해 경제적이며, 높은 효율을 보인다는 장점을 가지고 있다. 하지만, 막의 표면에 오염물질이 흡착하여 발생하는 막오염 현상으로 인해 막여과의 효율이 크게 줄어들게 된다. 다양한 종류의 막 중에서 세라믹 분리막은 친수성을 띄며, 화학적으로 안정되었기 때문에 오염방지에 효과적이다. 또한, 산화 그래핀 등을 활용한 복합막도 막오염을 예방하는 데 도움이 될 수 있다. 최근에는 막오염을 방지하고 시너지 효과를 얻기 위해 광촉매 분리막이 해결책으로 제시되었다. 막 분리는 광촉매의 단점인 촉매의 낮은 재사용률을 보완할 수 있으며, 광촉매 반응은 오염을 막을 수 있다.

Keywords

References

  1. M. S. A. Amin, F. Stuber, J. Giralt, A. Fortuny, A. Fabregat, and J. Font, "Compact Carbon-Based Membrane Reactors for the Intensified Anaerobic Decolorization of Dye Effluents", Membranes, 12, 174 (2022). https://doi.org/10.3390/membranes12020174
  2. B. Lee and R. Patel, "Oil/Water Separation Technology by MXene Composite Membrane: A Review" Membr. J., 31, 304 (2021). https://doi.org/10.14579/MEMBRANE_JOURNAL.2021.31.5.304
  3. E. J. Jang and R. Patel, "Bacterial Cellulose Membrane for Wastewater Treatment: A Review", Membr. J., 31, 384 (2021). https://doi.org/10.14579/MEMBRANE_JOURNAL.2021.31.6.384
  4. Q. Gu, T. C. A. Ng, Y. Bao, H. Y. Ng, S. C. Tan, and J. Wang, "Developing better ceramic membranes for water and wastewater Treatment: Where microstructure integrates with chemistry and functionalities", Chem. Eng. J., 428, 130456 (2021).
  5. Q. Gu, T. C. A. Ng, I. Zain, X. Liu, L. Zhang, Z. Zhang, Z. Lyu, Z. He, H. Y. Ng, and J. Wang, "Chemical-grafting of graphene oxide quantum dots (GOQDs) onto ceramic microfiltration membranes for enhanced water permeability and anti-organic fouling potential", Appl. Surf. Sci., 502, 144128 (2020). https://doi.org/10.1016/j.apsusc.2019.144128
  6. J. Ma, Y. He, H. Shi, Y. Fan, H. Yu, and Y. Li, "Stable graphene oxide-based composite membranes intercalated with montmorillonite nanoplatelets for water purification", J. Mater. Sci., 54, 2241 (2019). https://doi.org/10.1007/s10853-018-2997-6
  7. J. Ma, Y. He, G. Zeng, F. Li, Y. Li, J. Xiao, and S. Yang, "Bio-inspired method to fabricate poly-dopamine/reduced graphene oxide composite membranes for dyes and heavy metal ion removal", Polym. Adv. Technol., 29, 941 (2018). https://doi.org/10.1002/pat.4205
  8. S. Son and R. Patel, "Membrane Containing Biocidal Material for Reduced Biofilm Formation: A Review", Membr. J., 32, 23 (2022). https://doi.org/10.14579/MEMBRANE_JOURNAL.2022.32.1.23
  9. S. Chang, R. Ahmad, D. E. Kwon, and J. Kim, "Hybrid ceramic membrane reactor combined with fluidized adsorbents and scouring agents for hazardous metal-plating wastewater treatment", J. Hazard. Mater., 388, 121777 (2020). https://doi.org/10.1016/j.jhazmat.2019.121777
  10. R. Ahmad, C. S. Lee, J. H. Kim, and J. Kim, "Partially coated TiO2 on Al2O3 membrane for high water flux and photodegradation by novel filtration strategy in photocatalytic membrane reactors", Chem. Eng. Res. Des. 163, 138 (2020). https://doi.org/10.1016/j.cherd.2020.08.027
  11. J. Y. Park, "Hybrid Water/Wastewater Treatment Process of Membrane and Photocatalyst", Membr. J., 28, 143 (2018). https://doi.org/10.14579/MEMBRANE_JOURNAL.2018.28.3.143
  12. N. Nasrollahi, L. Ghalamchi, V. Vatanpour, and A. Khataee, "Photocatalytic-membrane technology: a critical review for membrane fouling mitigation", J. Ind. Eng. Chem., 93, 101 (2021). https://doi.org/10.1016/j.jiec.2020.09.031
  13. R. Ahmad, J. Guo, and J. Kim, "Structural characteristics of hazardous organic dyes and relationship between membrane fouling and organic removal efficiency in fluidized ceramic membrane reactor", J. Clean. Prod., 232, 608 (2019). https://doi.org/10.1016/j.jclepro.2019.05.244
  14. F. Liu, H. Yao, S. Sun, W. Tao, T. Wei, and P. Sun, "Photo-Fenton activation mechanism and antifouling performance of an FeOCl-coated ceramic membrane", Chem. Eng. J., 402, 125477 (2020). https://doi.org/10.1016/j.cej.2020.125477
  15. R. Ahmad, J. K. Kim, J. H. Kim, and J. Kim, "Nanostructured ceramic photocatalytic membrane modified with a polymer template for textile wastewater treatment", Appl. Sci., 7, 1284 (2017). https://doi.org/10.3390/app7121284
  16. R. Ahmad, J. K. Kim, J. H. Kim, and J. Kim, "Diethylene glycol-assisted organized TiO2 nanostructures for photocatalytic wastewater treatment ceramic membranes", Water, 11, 750 (2019). https://doi.org/10.3390/w11040750
  17. A. Gimenez-Perez, S. K. Bikkarolla, J. Benson, C. Bengoa, F. Stuber, A. Fortuny, A. Fabregat, J. Font, and P. Papakonstantinou, "Synthesis of N-doped and non-doped partially oxidised graphene membranes supported over ceramic materials", J. Mater. Sci., 51, 8346 (2016). https://doi.org/10.1007/s10853-016-0075-5
  18. R. Janssens, R. Hainaut, J. Gillard, H. Dailly, and P. Luis, "Performance of a Slurry Photocatalytic Membrane Reactor for the Treatment of Real Secondary Wastewater Effluent Polluted by Anticancer Drugs", Ind. Eng. Chem. Res., 60, 2223 (2021). https://doi.org/10.1021/acs.iecr.0c04846
  19. H. R. Mahdavi, M. Arzani, and T. Mohammadi, "Synthesis, characterization and performance evaluation of an optimized ceramic membrane with physical separation and photocatalytic degradation capabilities", Ceram. Int., 44, 10281 (2018). https://doi.org/10.1016/j.ceramint.2018.03.035
  20. L. T. Nyamutswa, B. Hanson, D. Navaratna, S. F. Collins, K. G. Linden, and M. C. Duke, "Sunlight-Transmitting Photocatalytic Membrane for Reduced Maintenance Water Treatment", ACS ES&T Water, 1, 2001 (2021). https://doi.org/10.1021/acsestwater.1c00073
  21. L. Song, B. Zhu, S. Gray, M. Duke, and S. Muthukumaran, "Performance of hybrid photocatalytic-ceramic membrane system for the treatment of secondary effluent", Membr., 7, 20 (2017). https://doi.org/10.3390/membranes7020020
  22. J. Zhang, M. Yan, G. Sun, and K. Liu, "Simultaneous removal of Cu(II), Cd(II), Cr(VI), and rhodamine B in wastewater using TiO2 nanofibers membrane loaded on porous fly ash ceramic support", Sep. Purif. Technol., 272, 118888 (2021). https://doi.org/10.1016/j.seppur.2021.118888
  23. Y. Lee, T. Fujimoto, S. Yamanaka, and Y. Kuga, "Evaluation of photocatalysis of Au supported ZnO prepared by the spray pyrolysis method", Adv. Powder Technol., 32, 1619 (2021). https://doi.org/10.1016/j.apt.2021.03.025
  24. D. Naresh Yadav, K. A. Kishore, B. Bethi, S. H. Sonawane, and D. Bhagawan, "ZnO nanophotocatalysts coupled with ceramic membrane method for treatment of Rhodamine-B dye waste water", Environ. Dev. Sustainability, 20, 2065 (2018). https://doi.org/10.1007/s10668-017-9977-x