DOI QR코드

DOI QR Code

디지털 트윈국토 건물 데이터 품질 표준 개발을 위한 항목 도출에 관한 연구

A Study on the Derivation of Items for Development of Data Quality Standard for 3D Building Data in National Digital Twin

  • 김병선 (안양대학교 스마트시티공학과) ;
  • 이희석 (안양대학교 도시정보공학과) ;
  • 홍상기 (안양대학교 도시정보공학과)
  • Kim, Byeongsun (Department of Smart City Engineering, Anyang University) ;
  • Lee, Heeseok (Department of Urban Information Engineering, Anyang University) ;
  • Hong, Sangki (Department of Urban Information Engineering, Anyang University)
  • 투고 : 2022.02.22
  • 심사 : 2022.06.22
  • 발행 : 2022.06.30

초록

본 연구는 디지털 트윈국토 건물 데이터 품질 표준을 개발하기 위한 품질 항목 모델을 제시하는데 목적이 있다. 이를 위해 3차원 공간정보 오류의 특징과 품질 표준 필요성에 대해 도출하였으며, 디지털 트윈국토 건물 품질 개발에 필요한 데이터 모델 표준과 공간정보 품질 표준에 대해 분석하였다. 이러한 내용을 토대로 디지털 트윈국토 건물 데이터의 품질 평가 범위, 품질 표준 확장 요소(기하 무결성, 기하 충실도, 위치 정확성, 시맨틱 분류 정확성) 및 품질 항목 모델(안)을 제시하였다. 본 연구에서 제안한 디지털 트윈국토 건물 품질 항목모델은 디지털 트윈국토 품질 표준 개발은 물론 이와 관련된 다양한 디지털 트윈국토 공간정보표준 개발에 기여할 것으로 판단된다.

This study presents the plans to derive quality items for develop the data quality standard for ensuring the quality of 3D building geospatial data in NDT(National Digital Twin). This paper is organized as follows. The first section briefly examines various factors that impact the quality of 3D geospatial data, and proposes the role and necessity of the data quality standard as a means of addressing the data errors properly and also meeting the minimum requirements of stakeholders. The second section analyzes the relationship between the standards - building data model for NDT and ISO 19157: Geospatial data quality - in order to consider directly relevant standards. Finally, we suggest three plans on developing NDT data quality standard: (1) the scope for evaluating data quality, (2) additional quality elements(geometric integrity, geometric fidelity, positional accuracy and semantic classification accuracy), and (3) NDT data quality items model based on ISO 19157. The plans reveled through the study would contribute to establish a way for the national standard on NDT data quality as well as the other standards associated with NDT over the coming years.

키워드

참고문헌

  1. Ministry of Land, Infrastructure and Transport. 2017. A study on new national base map system.
  2. Ministry of Land, Infrastructure and Transport. 2021. A study on national spatial information standardization.
  3. National Geographic Information Institute. 2020. DataBase for building height in the noational base map.
  4. Kim BS, Kim K. 2020. A Study on Major Issues and Policy Improvements for 3-Dimension City Models in Korea. Journal of the Korean Association of Geographic Information. 23(3): 49-60.
  5. Kim BS, Lee HS, Hong SK. 2020. Design and Implementation of the Prototype System to Validate 3-Dimensional Geospatial Data. Journal of Korean Society for Geospatial Information Science. 28(3): 39-49.
  6. Kim BS, Yoo JJ, Hong SK. A Fundamental Study on the Standardization of Reference Model and Data Model in Digital Twin for Land. Journal of Cadastre & Land InformatiX. 51(1): 5-22. https://doi.org/10.22640/LXSIRI.2021.51.1.5
  7. Kim BS, Jeong DW, Hong SK. 2019, Constructing 3D Geo-spatial Model for Building Data in UML. Journal of Korean Society for Geospatial Information System. 26(4): 57-67.
  8. Yue BM, Yue Y. 2013. Concept of survey. Parkyoung.
  9. Park JM, Oh SW, Suh SH. 2002. A Study on the Method of GIS Standard Development through Profiling. Journal of Korean Association of Geographic Information Studies. 5(4): 56-64.
  10. 이고운. 2011. "건물간 이격거리 따질 땐, 가장 도출된 부분이 기준". 한경닷컴.
  11. Choi JY, Kim EH. 2017. A Study on a Recombination Method for the Bottom-up Construction of Spatial Information Products. Journal of Cadastre & Land InformatiX. 47(2):185-199. https://doi.org/10.22640/LXSIRI.2017.47.2.185
  12. Choi JY, Kim EH. 2017. A Quality Management Model for Consumer-oriented Spatial Information. Journal of Cadastre & Land InformatiX. 50(1): 47-62. https://doi.org/10.22640/LXSIRI.2020.50.1.47
  13. Telecommunications Technology Association. 2021. Indoor Spatial Data Model.
  14. Burrough P, McDonnell R. 1998. Principles of Geographical Information Systems. Oxford: Oxford University Press.
  15. Chrisman NR. 1991. The error component in spatial data. Geographical information systems: Principles and applications. 1: 165-174.
  16. Devillers R, Jeansoulin R. 2010. Spatial data quality: Concepts. Fundamentals of Spatial Data Quality. London. 31-42.
  17. Grieves M, Vickers J. 2017. Digital Twin: Mitigating Unpredictable, Undesirable Emergent Behavior in Complex Systems. Transdisciplinary Perspectives on Complex Systems. 85-113.
  18. Heuvelink G. 1998. Uncertainty analysis in environmental modelling under a change of spatial scale. Nutrient Cycling in Agroecosystems. 50(1):255-264. https://doi.org/10.1023/A:1009700614041
  19. ISO/TC 211. 2003. ISO 19107:2003 Geographic information - Spatial Schema.
  20. ISO/TC 211. 2013. ISO 19157:2013 Geographic information - Data quality.
  21. ISO/TC 211. 2014. ISO 19115-1:2014 Geographic information - Metadata - Part 1: Fundamentals.
  22. Janssen W, Blocken B, Hooff V. 2013. Pedestrian wind comfort around buildings: Comparison of wind comfort criteria based on whole-flow field data for a complex case study. Building and Environment. 59(1) 547-562. https://doi.org/10.1016/j.buildenv.2012.10.012
  23. Nouvel R, Mastrucci A, Leopold U, Baume O, Coors V. Eicker U. 2015. Combining GIS-based statistical and engineering urban heat consumption models: Towards a new framework for multi-scale policy support. Energy and Buildings. 107: 204-212. https://doi.org/10.1016/j.enbuild.2015.08.021
  24. OGC. 2012. OGC city geography markup language (CityGML) encoding standard. OGC 12-019.
  25. OGC. 2016. OGC CityGML quality interoperability experiment(CityGML QIE). OGC 16-064r1.
  26. OGC. 2021. OGC city geography markup language (CityGML) part 1: conceptual model standard. OGC 20-010.
  27. Saran S, Wate P, Srivastav S, Krishna M. 2015. CityGML at semantic level for urban energy conservation strategies. Annals of GIS. 21(1): 27-41. https://doi.org/10.1080/19475683.2014.992370
  28. Sargent I, Harding J, Freeman M. 2007. Data Quality in 3D: Gauging Quality Measures From Users' Requirements. Quality assessment of 3D geospatial data.
  29. Stoter J, Arroyo O, Dukai B, Labetski A, Kavisha K, Vitalis S, Ledoux H. 2020. State of the Art in 3D City Modelling Six Challenges Facing 3D Data as a Platform. Available online: https://pure.tudelft.nl/ws/portalfiles/portal/85852698/State_of_the_Art_in_3D_City_Modelling.pdf.
  30. Stoter J, Kluijver H, Kurakula V. 2008. 3D noise mapping in urban areas. International Journal of Geographical Information Science. 22(8): 907-924. https://doi.org/10.1080/13658810701739039
  31. Hankyung. 2011. "When considering the distance between buildings, the most protruding part is the standard". Available online: https://www.hankyung.com/society/article/201108018072.
  32. V-World. 2022. Vworld 3D WebGL based map. Available online: https://map.vworld.kr/map/ws3dmap.do.
  33. Zhao J, Stoter J, Ledoux H. 2014. A framework for the automatic geometric repair of CityGML models. In cartography from pole to pole. Springer. Berlin. 187-202.