DOI QR코드

DOI QR Code

A Comparative Study on International Baccalaureate Diploma Programme(IBDP) Textbooks and Korean Textbooks by the 2015 Revised Curriculum -Focus on function from a mathematical modeling perspective-

우리나라 교과서와 International Baccalaureate Diploma Programme(IBDP) 교과서 비교·분석 -수학적 모델링의 관점에서 함수 영역을 중심으로-

  • Received : 2022.05.11
  • Accepted : 2022.06.23
  • Published : 2022.06.30

Abstract

This study aimed to compare and analyze the number and characteristics of modeling problems in chapters related to function contents in International Baccalaureate Diploma Program (IBDP) mathematics textbooks and Korean high school mathematics textbooks. This study implies how the textbooks contributed to the improvement of students' modeling competency. In this study, three textbooks from IBDP and all nine textbooks from the Korean 2015 revised curriculum were selected. All the problems in textbooks were classified into real-world problems and non-real-world problems. Problems classified as real-world problems were once again divided into word problems and modeling problems according to the need to set up mathematical models. Modeling problems were further categorized into standard applications and good modeling problems depending on whether all the necessary information was included in the problem-solving process. Among the 12 textbooks, the textbook with the most modeling problems was the IBDP textbook, 'Math: Applications and Interpretation', which accounted for 50.41% of modeling problems to the total number of problems. This textbook provided learners with significantly higher modeling opportunities than other IBDP and Korean textbooks, which had 2% and 9% modeling problem ratios. In all 12 textbooks, all problems classified as modeling problems appeared as standard applications, and there were no proper modeling problems. Among the six sub-competencies of mathematical modeling, 'mathematical analysis' and 'interpretation and evaluation of results' sub-competencies appeared the most with very similar number of modeling problems, followed by the 'mathematization'. It is expected that the results of this study will help compare the number and ratio of modeling problems in each textbook and provide a better understanding of which modeling sub-competencies appear to what extent in the modeling problems.

본 연구의 목적은 International Baccalaureate Diploma Programme(이하 IBDP)의 수학 교과서와 우리나라 고등학교 수학 교과서의 함수 단원의 문제 중 모델링 문제의 수와 특징을 비교·분석하는데 있다. IBDP 교과서 3종과 우리나라 교과서 9종 선택한 후 이원분류법을 사용하여 교과서의 모든 문제를 실세계 문제와 그렇지 않은 문제로 분류한 후 실세계 문제는 수학적 모델 설정의 필요성에 따라 문장제와 모델링 문제로 분류한 다음 모델링 문제는 일반적 응용문제와 적절한 모델링 문제로 분류하였다. 12 종의 교과서 중 모델링 문제를 가장 많이 포함한 교과서는 IBDP의 '수학: 응용과 해석 HL' 교과서로 전체 문제대비 50.41%의 모델링 문제 비율을 나타내었다. 이 교과서는 2%에서 9% 사이의 모델링 문제 비율 분포를 보인 다른 교과서에 비해 학습자들에게 현저히 높은 모델링 기회를 제공하였다. 수학적 모델링의 6가지 하위 행동 요소 중 '수학적 분석' 요소와 '해석과 결과에 대한 분석' 요소는 모델링 문항 수와 매우 유사한 정도로 가장 많이 나타났으며 '수학화' 요소가 뒤를 이었다. 위의 연구 결과로 모델링 문제들에 대한 분석을 통해 각 교과서에서 등장하는 모델링 문제의 수와 비율에 대한 비교와 모델링 문제에서 어떠한 모델링 하위행동요소가 어느 정도로 나타나는지에 대한 이해에 도움을 줄 수 있을 것으로 기대한다.

Keywords

References

  1. 강미옥, 신경희. (2020). IB 교육과정 한국어판 공교육 도입에 관한 생태학적 연구. 교육문화연구, 26(1), 375-396. https://doi.org/10.24159/JOEC.2020.26.1.375
  2. 강옥기. (2010). 수학적 모델링의 정교화 과정 연구. 대한수학교육학회지, 20(1), 73-84.
  3. 고상숙, 한혜숙, 김현주, 이동근, 신동조, 이창연. (2020a). 수학적 모델링에 기반한 미래형 수학 교재개발. 교육문화연구, 26(5), 665-690. https://doi.org/10.24159/JOEC.2020.26.5.665
  4. 고상숙, 한혜숙, 김현주, 이동근, 이창연, 박우홍. (2020b). 신규 고등학교 수학 교재개발. Report-BD20020005. 한국과학창의재단.
  5. 고성은, 이진호, 이승우, 차순규, 김윤희, 오택근, 조성철. (2017). 고등학교 수학. 좋은책 신사고.
  6. 교육부. (2015). 수학과 교육과정. 교육부 고시, 제 2015-74호, [별책8].
  7. 권오남, 신준국, 전인태, 김미주, 김철호, 김태홍, 박재희, 박정숙. (2017). 고등학교 수학. 교학사.
  8. 김선희, 김수민, 이은정. (2020). IB DP 수학 내용 및 교수.학습 특징에 근거한 고등학교 수학교육의 방향. 수학교육학연구, 30(2), 329-351.
  9. 김원경, 조민식, 방금성, 윤종국, 신재훈, 임석훈, 김동화, 강순자, 김기탁, 박희정, 심주석, 오혜정, 이동근, 이성재, 정재훈. (2017). 고등학교 수학. 비상교육.
  10. 김천홍. (2018). 인터내셔널 바칼로레아 디플로마 프로그램(International Baccalaureate Diploma Programme)의 국내 공교육 도입에 대한 비판적 고찰. 학습자중심교과교육연구, 18(12), 637-665.
  11. 나귀수, 박미미, 김동원, 김연, 이수진. (2018). 미래 시대의 수학교육 방향에 대한 연구. 수학교육학연구, 28(4), 437-478.
  12. 류희찬, 선우하식, 신보미, 조정묵, 이병만, 김용식, 임미선, 한명주, 남선주, 김명수, 정성윤. (2017). 고등학교 수학. 천재교과서.
  13. 박교식, 이종희, 김진환, 남진영, 김남희, 임재훈, 유연주, 권석일, 김선희, 김종욱, 김경직, 윤형석, 고현주, 윤형주, 김영실, 김해성, 이경진, 조유미, 이정연, 양정은. (2017). 고등학교 수학. 동아출판.
  14. 배종숙, 여태경, 조보관, 김민경, 천화정, 조성현, 변도열. (2017). 고등학교 수학. 금성출판사.
  15. 신현성, 이명화. (2011). 실세계 상황에서 수학적 모델링 과제설정 효과. 한국학교수학회눈문집, 14(4), 423-442.
  16. 양현주, 좌준수, 최승현. (2015). 2009 개정 수학교육과정과 IBDP 수학과 교육과정에서의 교과서 비교 연구 -고등학교 대수 영역을 중심으로-, 수학교육논문집, 29(3), 391-421.
  17. 이준열, 최부림, 김동재, 이정례, 전철, 장희숙, 송윤호, 송정, 김성철, 김미영. (2017). 고등학교 수학. 천재교육.
  18. 정승요, 박만구. (2016). 수학과 교육과정의 변화에 따른 초등학교 3,4학년 교과서의 수학적 모델링 관련 제시방법 분석, 한국학교수학회논문집, 19(1), 103-122.
  19. 정혜윤, 정진호, 이경화. (2020). 수학적 모델링 관점에 따른 한국과 미국의 중학교 1학년 교과서 기하영역에 제시된 과제 분석. 한국학교수학회수학회논문집, 23(2), 179-201.
  20. 최경아. (2017). 수학 교과 역량 관점에서의 수학적 모델링에 관한 선행 연구 탐색. 한국학교수학회논문집, 20(2), 187-210. https://doi.org/10.30807/KSMS.2017.20.2.006
  21. 하화주, 홍후조, 박하식. (2012). 우리나라 고등학교에서의 IBDP 교육과정 적용의 현황 및 과제. 교육과정연구, 30(4), 51-79. https://doi.org/10.15708/KSCS.30.4.201212.003003
  22. 홍석복, 이중권, 신태교, 이채형, 이병하, 신용우, 전형숙, 김형균, 권백일, 최원숙, 강인우. (2017). 고등학교 수학. 지학사.
  23. 황선욱, 강병개, 윤갑진, 이광연, 김수영, 이문호, 김원일, 박문환, 박상의. (2017). 고등학교 수학. 미래엔.
  24. Asempapa, R. S. (2015). Mathematical modeling: Essential for elementary and middle school students. Journal of Mathematics Education, 8(1), 16-29.
  25. Blomhoj, M.., & Jensen, T. H. (2003). Developing mathematical modelling competence: Conceptual clarification and educational planning. Teaching Mathematics and its Applications, 22(3), 123-139. https://doi.org/10.1093/teamat/22.3.123
  26. Blum, W., & Ferri, R. B. (2009). Mathematical Modelling: Can It Be Taught and Learnt?. Journal of Mathematical Modelling and Application, 1(1), 45-58.
  27. Blum, W., Galbraith, P. L., Henn, H. W., & Niss, M. (Eds.). (2007). Modelling and applications in mathematics education: The 14th ICMI study. Boston, MA: Springer US.
  28. Blum, W., & Leiss, D. (2007). Investigating quality mathematics teaching: The DISUM project. Developing and researching quality in mathematics teaching and learning, proceedings of MADIF, 5, 3-16.
  29. Blum, W., & Niss, M. (1991). Applied mathematical problem solving, modelling, applications, and links to other subjects-State, trends and issues in mathematics instruction. Educational studies in mathematics, 22(1), 37-68. https://doi.org/10.1007/BF00302716
  30. CCSSI. (2010). Common Core State Standards Initiative. Retrieved from http://www.corestandards.org/Math
  31. Doering, S., Halsey, T., Economopoulos, P., Ortman, M.., Gray, P., Singh, N. S., Harris, D., & Wathall, J. C. (2019). Mathematics: Applications and Interpretation Higher Level. Oxford University Press.
  32. English, L., & Sriraman, B. (2010). Problem solving for the 21 st century. In Theories of mathematics education (pp. 263-290). Springer, Berlin, Heidelberg.
  33. English, L. D., & Watters, J. J. (2004). Mathematical Modelling with Young Children. International Group for the Psychology of Mathematics Education.
  34. Frejd, P. (2013). An analysis of mathematical modelling in Swedish textbooks in upper secondary school. Nordic Studies in Mathematics Education, 18(3), 59-95.
  35. Galbraith, P., & Stillman, G. (2001). Assumptions and context: Pursuing their role in modelling activity. Modelling and mathematics education, ICTMA, 9, 300-310 https://doi.org/10.1533/9780857099655.5.300
  36. Haese, M.., Humphries, M., Sangwin, C., & Vo, N. (2019). Mathematics: Core Topics HL. Marleston: Haese Mathematics.
  37. International Baccalaureate Organization. (2019a). Diploma Progarmme Mathematics: analysis and approaches guide.
  38. International Baccalaureate Organization. (2019b). Diploma Progarmme Mathematics: analysis and approaches teacher support material.
  39. International Baccalaureate Organization. (2019c). Diploma Progarmme Mathematics: applications and interpretation guide.
  40. International Baccalaureate Organization. (2019d). Diploma Progarmme Mathematics: applications and interpretation teacher support material.
  41. Kroger, I. (2019). Practicing mathematical modeling in upper secondary school: An analysis of the opportunities offered by Swedish and German textbooks(professional degree). Karlstad University, Faculty of Health, Science and Technology, Department of Mathematics and Computer Science, Karlstads, Sweden.
  42. Lesh, R.., & Doerr, H. M.. (2003). Beyond constructivism: A models & modelling perspective on mathematics problem solving, learning, and teaching. Routledge.
  43. Pollak, H. O. (2011). What is mathematical modeling?. Journal of Mathematics Education at Teachers College, 2(1).
  44. Wathall, J. C., Harcet, J., Harrison, R.., Heinrichs, L., & Torres-Skoumal, M.. (2019). Mathematics: Analysis and Approaches Higher Level. Oxford University Press.