Acknowledgement
이 논문은 2022년도 한국한의학연구원의 주요사업인 한의의료기술의 임상근거 강화(KSN2022210)의 지원을 받아 수행된 연구임.
References
- Stefan N, Birkenfeld AL, Schulze MB. Global pandemics interconnected-obesity, impaired metabolic health and COVID-19. Nature Reviews Endocrinology. 2021 ; 17(3) : 135-49. https://doi.org/10.1038/s41574-020-00462-1
- Banerjee M, Gupta S, Sharma P, Shekhawat J, Gauba K. Obesity and COVID-19: a fatal alliance. Indian Journal of Clinical Biochemistry. 2020 ; 35(4) : 410-7. https://doi.org/10.1007/s12291-020-00909-2
- Aghili SMM, Ebrahimpur M, Arjmand B, Shadman Z, Pejman Sani M, Qorbani M, et al. Obesity in COVID-19 era, implications for mechanisms, comorbidities, and prognosis: a review and meta-analysis. International Journal of Obesity. 2021 ; 45(5) : 998-1016. https://doi.org/10.1038/s41366-021-00776-8
- Cava E, Neri B, Carbonelli MG, Riso S, Carbone S. Obesity pandemic during COVID-19 outbreak: Narrative review and future considerations. Clinical Nutrition. 2021 ; 40(4) : 1637-43. https://doi.org/10.1016/j.clnu.2021.02.038
- Lim S, Shin SM, Nam GE, Jung CH, Koo BK. Proper management of people with obesity during the COVID-19 pandemic. Journal of Obesity & Metabolic Syndrome. 2020 ; 29(2) : 84. https://doi.org/10.7570/jomes20056
- Clemmensen C, Petersen MB, Sorensen TIA. Will the COVID-19 pandemic worsen the obesity epidemic? Nat Rev Endocrinol. 2020 ; 16(9) : 469-70. https://doi.org/10.1038/s41574-020-0387-z
- Crook H, Raza S, Nowell J, Young M, Edison P. Long covid-mechanisms, risk factors, and management. Bmj. 2021 ; 374 : n1648.
- Korea Institute of Oriental Medicine, Obesity Korean medicine clinical practice guideline. Seoul : Elsevier Korea. 2016.
- Stefan N, Birkenfeld AL, Schulze MB, Ludwig DS. Obesity and impaired metabolic health in patients with COVID-19. Nat Rev Endocrinol. 2020 ; 16(7) : 341-2. https://doi.org/10.1038/s41574-020-0364-6
- Grant WB, Lahore H, McDonnell SL, Baggerly CA, French CB, Aliano JL, et al. Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients. 2020 ; 12(4) : 988. https://doi.org/10.3390/nu12040988
- Teymoori-Rad M, Shokri F, Salimi V, Marashi SM. The interplay between vitamin D and viral infections. Rev Med Virol. 2019 ; 29(2) : 2032.
- Watanabe M, Risi R, Tuccinardi D, Baquero CJ, Manfrini S, Gnessi L. Obesity and SARS-CoV-2: a population to safeguard. Diabetes Metab Res Rev. 2020 ; 36(7) : 3325.
- Muscogiuri G, Pugliese G, Barrea L, Savastano S, Colao A. Commentary: obesity: the "Achilles heel" for COVID-19? Metabolism. 2020 ; 108 : 154251. https://doi.org/10.1016/j.metabol.2020.154251
- Karkhaneh M, Qorbani M, Mohajeri-Tehrani MR, Hoseini S. Association of serum complement C3 with metabolic syndrome components in normal weight obese women. J Diabetes Metab Disord. 2017 ; 16 : 49. https://doi.org/10.1186/s40200-017-0330-6
- Sindhu S, Thomas R, Shihab P, Sriraman D, Behbehani K, Ahmad R. Obesity is a positive modulator of IL-6R and IL-6 expression in the subcutaneous adipose tissue: significance for metabolic inflammation. PLoS One. 2015 ; 10(7) : 0133494.
- Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020 ; 46(5) : 846-8. https://doi.org/10.1007/s00134-020-05991-x
- Jose RJ, Manuel A. Does coronavirus disease 2019 disprove the obesity paradox in acute respiratory distress syndrome? Obesity (Silver Spring). 2020 ; 28(6) : 1007. https://doi.org/10.1002/oby.22835
- Michalakis K, Ilias I. SARS-CoV-2 infection and obesity: common inflammatory and metabolic aspects. Diabetes Metab Syndr. 2020 ; 14(4) : 469-71. https://doi.org/10.1016/j.dsx.2020.04.033
- Zhang AJ, To KK, Li C, Lau CC, Poon VK, Chan CC, et al. Leptin mediates the pathogenesis of severe 2009 pandemic influenza A (H1N1) infection associated with cytokine dysregulation in mice with diet-induced obesity. J Infect Dis. 2013 ; 207(8) : 1270-80. https://doi.org/10.1093/infdis/jit031
- Maier HE, Lopez R, Sanchez N, Ng S, Gresh L, Ojeda S, et al. Obesity increases the duration of influenza A virus shedding in adults. J Infect Dis. 2018 ; 218(9) : 1378-82. https://doi.org/10.1093/infdis/jiy370
- A hn SY, Sohn SH, Lee SY, Park HL, Park YW, Kim H, et al. The effect of lipopolysaccharide-induced obesity and its chronic inflammation on influenza virus-related pathology. Environ Toxicol Pharmacol. 2015 ; 40(3) : 924-30. https://doi.org/10.1016/j.etap.2015.09.020
- Pasarica M, Dhurandhar NV. Infectobesity: obesity of infectious origin. Advances in Food and Nutrition Research. 2007 ; 52 : 61-102. https://doi.org/10.1016/S1043-4526(06)52002-9
- Bailin SS, Gabriel CL, Wanjalla CN, Koethe JR. Obesity and weight gain in persons with HIV. Current HIV/AIDS Reports. 2020 ; 17(2) : 138-50. https://doi.org/10.1007/s11904-020-00483-5
- Atkinson R, Dhurandhar N, Allison D, Bowen R, Israel B, Albu J, et al. Human adenovirus-36 is associated with increased body weight and paradoxical reduction of serum lipids. International Journal of Obesity. 2005 ; 29(3) : 281-6. https://doi.org/10.1038/sj.ijo.0802830
- Bassols J, Moreno JM, Ortega F, Ricart W, Fernandez-Real JM. Characterization of herpes virus entry mediator as a factor linked to obesity. Obesity. 2010 ; 18(2) : 239-46. https://doi.org/10.1038/oby.2009.250
- Bianchi F, Duque ALRF, Saad SMI, Sivieri K. Gut microbiome approaches to treat obesity in humans. Applied Microbiology and Biotechnology. 2019 ; 103(3) : 1081-94. https://doi.org/10.1007/s00253-018-9570-8
- Dhurandhar NV. Contribution of pathogens in human obesity. Drug News & Perspectives. 2004 ; 17(5) : 307-13. https://doi.org/10.1358/dnp.2004.17.5.829034
- Dhurandhar N, Bailey D, Thomas D. Interaction of obesity and infections. Obesity Reviews. 2015 ; 16(12) : 1017-29. https://doi.org/10.1111/obr.12320
- Tian Y, Jennings J, Gong Y, Sang Y. Viral infections and interferons in the development of obesity. Biomolecules. 2019 ; 9(11) : 726. https://doi.org/10.3390/biom9110726
- Sun L, Ma L, Ma Y, Zhang F, Zhao C, Nie Y. Insights into the role of gut microbiota in obesity: pathogenesis, mechanisms, and therapeutic perspectives. Protein Cell. 2018 ; 9(5) : 397-403. https://doi.org/10.1007/s13238-018-0546-3
- Varga Z, Flammer AJ, Steiger P, Haberecker M, Andermatt R, Zinkernagel AS, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020 ; 395(10234) : 1417-8. https://doi.org/10.1016/s0140-6736(20)30937-5
- Ackermann M, Verleden SE, Kuehnel M, Haverich A, Welte T, Laenger F, et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N Engl J Med. 2020 ; 383(2) : 120-8. https://doi.org/10.1056/NEJMoa2015432
- Hendren NS, Drazner MH, Bozkurt B, Cooper LT Jr. Description and proposed management of the acute COVID19 cardiovascular syndrome. Circulation. 2020 ; 141(23) : 1903-14. https://doi.org/10.1161/CIRCULATIONAHA.120.047349
- Hundt MA, Deng Y, Ciarleglio MM, Nathanson MH, Lim JK. Abnormal liver tests in COVID-19: a retrospective observational cohort study of 1,827 patients in a major U.S. hospital network. Hepatology. 2020 ; 72(4) : 1169-76. https://doi.org/10.1002/hep.31487
- Bertolini A, van de Peppel IP, Bodewes F, Moshage H, Fantin A, Farinati F, et al. Abnormal liver function tests in patients with COVID-19: relevance and potential pathogenesis. Hepatology. 2020 ; 72(5) : 1864-72. https://doi.org/10.1002/hep.31480
- Yang JK, Lin SS, Ji XJ, Guo LM. Binding of SARS coronavirus to its receptor damages islets and causes acute diabetes. Acta Diabetol. 2010 ; 47(3) : 193-9. https://doi.org/10.1007/s00592-009-0109-4
- Liu F, Long X, Zhang B, Zhang W, Chen X, Zhang Z. ACE2 expression in pancreas may cause pancreatic damage after SARS-CoV-2 infection. Clin Gastroenterol Hepatol. 2020 ; 18(9) : 2128-30. https://doi.org/10.1016/j.cgh.2020.04.040
- Cheng Y, Luo R, Wang K, Zhang M, Wang Z, Dong L, et al. Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int. 2020 ; 97(5) : 829-38. https://doi.org/10.1016/j.kint.2020.03.005
- Naicker S, Yang CW, Hwang SJ, Liu BC, Chen JH, Jha V. The novel Coronavirus 2019 epidemic and kidneys. Kidney Int. 2020 ; 97(5) : 824-8. https://doi.org/10.1016/j.kint.2020.03.001
- Puelles VG, Lutgehetmann M, Lindenmeyer MT, Sperhake JP, Wong MN, Allweiss L, et al. Multiorgan and renal tropism of SARS-CoV-2. N Engl J Med. 2020 ; 383(6) : 590-2. https://doi.org/10.1056/NEJMc2011400
- Gupta A, Madhavan MV, Sehgal K, Nair N, Mahajan S, Sehrawat TS, et al. Extrapulmonary manifestations of COVID-19. Nat Med. 2020 ; 26(7) : 1017-32. https://doi.org/10.1038/s41591-020-0968-3
- Wang C, Yu C, Jing H, Wu X, Novakovic VA, Xie R, et al. Long COVID: the nature of thrombotic sequelae determines the necessity of early anticoagulation. Frontiers in Cellular and Infection Microbiology. 2022 ; 12: 861703. https://doi.org/10.3389/fcimb.2022.861703
- Kim D, Subramanian SV, Gortmaker SL, Kawachi I. US state- and county-level social capital in relation to obesity and physical inactivity: a multilevel, multivariable analysis. Soc Sci Med. 2006 ; 63(4) : 1045-59. https://doi.org/10.1016/j.socscimed.2006.02.017
- Higgs S, Thomas J. Social influences on eating. Current Opinion in Behavioral Sciences. 2016 ; 9 : 1-6. https://doi.org/10.1016/j.cobeha.2015.10.005
- Yanovski JA, Yanovski SZ, Sovik KN, Nguyen TT, O'Neil PM, Sebring NG. A prospective study of holiday weight gain. N Engl J Med. 2000 ; 342(12) : 861-7. https://doi.org/10.1056/NEJM200003233421206
- Peterman JN, Wilde PE, Liang S, Bermudez OI, Silka L, Rogers BL. Relationship between past food deprivation and current dietary practices and weight status among Cambodian refugee women in Lowell, MA. Am J Public Health. 2010 ; 100(10) : 1930-7. https://doi.org/10.2105/AJPH.2009.175869
- National Institute for Health and Care Excellence. COVID19 rapid guideline: managing the long-term effects of COVID-19 NICE guideline [Internet]. 2020 [cited 2022 May 1]. Available from: https://www.nice.org.uk/guidance/ng188.
- Datta SD, Talwar A, Lee JT. A proposed framework and timeline of the spectrum of disease due to SARS-CoV-2 infection: illness beyond acute infection and public health implications. JAMA. 2020 ; 324(22) : 2251-2. https://doi.org/10.1001/jama.2020.22717
- Aiyegbusi OL, Hughes SE, Turner G, Rivera SC, McMullan C, Chandan JS, et al. Symptoms, complications and management of long COVID: a review. J R Soc Med. 2021 ; 114(9) : 428-42. https://doi.org/10.1177/01410768211032850
- Vimercati L, De Maria L, Quarato M, Caputi A, Gesualdo L, Migliore G, et al. Association between long COVID and overweight/obesity. J Clin Med. 2021 ; 10(18) : 10184143.
- Aminian A, Bena J, Pantalone KM, Burguera B. Association of obesity with postacute sequelae of COVID-19. Diabetes Obes Metab. 2021 ; 23(9) : 2183-8. https://doi.org/10.1111/dom.14454
- Umesh A, Pranay K, Pandey RC, Gupta MK. Evidence mapping and review of long- COVID and its underlying pathophysiological mechanism. Infection. 2022 ; 50 : 1-14. https://doi.org/10.1007/s15010-021-01659-w
- Talen MR, Mann MM. Obesity and mental health. Primary Care: Clinics in Office Practice. 2009 ; 36(2) : 287-305. https://doi.org/10.1016/j.pop.2009.01.012
- Sarwer DB, Polonsky HM. The psychosocial burden of obesity. Endocrinol Metab Clin North Am. 2016 ; 45(3) : 677-88. https://doi.org/10.1016/j.ecl.2016.04.016
- Bailey EK, Steward KA, VandenBussche Jantz AB, Kamper JE, Mahoney EJ, Duchnick JJ. Neuropsychology of COVID-19: anticipated cognitive and mental health outcomes. Neuropsychology. 2021 ; 35(4) : 335-51. https://doi.org/10.1037/neu0000731
- Woo MS, Malsy J, Pottgen J, Seddiq Zai S, Ufer F, Hadjilaou A, et al. Frequent neurocognitive deficits after recovery from mild COVID-19. Brain Communications. 2020 ; 2(2) : 1-9.
- Meinhardt J, Radke J, Dittmayer C, Franz J, Thomas C, Mothes R, et al. Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19. Nature Neuroscience. 2021 ; 24(2) : 168-75. https://doi.org/10.1038/s41593-020-00758-5
- Daniels BP, Holman DW, Cruz-Orengo L, Jujjavarapu H, Durrant DM, Klein RS. Viral pathogen-associated molecular patterns regulate blood-brain barrier integrity via competing innate cytokine signals. MBio. 2014 ; 5(5) : 1-13. https://doi.org/10.3391/mbi.2014.5.1.01
- Huang X, Hussain B, Chang J. Peripheral inflammation and blood-brain barrier disruption: effects and mechanisms. CNS Neuroscience & Therapeutics. 2021 ; 27(1) : 36-47. https://doi.org/10.1111/cns.13569
- Kim MH, Salloum S, Wang JY, Wong LP, Regan J, Lefteri K, et al. Type I, II, and III interferon signatures correspond to Coronavirus disease 2019 severity. J Infect Dis. 2021 ; 224(5) : 777-82. https://doi.org/10.1093/infdis/jiab288
- Boldrini M, Canoll PD, Klein RS. How COVID-19 affects the brain. JAMA Psychiatry. 2021 ; 78(6) : 682-3. https://doi.org/10.1001/jamapsychiatry.2021.0500
- Karczewski J, Sledzinska E, Baturo A, Jonczyk I, Maleszko A, Samborski P, et al. Obesity and inflammation. European Cytokine Network. 2018 ; 29(3) : 83-94. https://doi.org/10.1684/ecn.2018.0415
- Ma M-J, Qiu S-F, Cui X-M, Ni M, Liu H-J, Ye R-Z, et al. Persistent SARS-CoV-2 infection in asymptomatic young adults. Signal Transduction and Targeted Therapy. 2022 ; 7(1) : 77. https://doi.org/10.1038/s41392-022-00931-1
- Moran E, Cook T, Goodman AL, Gupta RK, Jolles S, Menon DK, et al. Persistent SARS-CoV-2 infection: the urgent need for access to treatment and trials. Lancet Infect Dis. 2021 ; 21(10) : 1345-7. https://doi.org/10.1016/S1473-3099(21)00464-3
- Phetsouphanh C, Darley DR, Wilson DB, Howe A, Munier CML, Patel SK, et al. Immunological dysfunction persists for 8 months following initial mild-to-moderate SARS-CoV-2 infection. Nature Immunology. 2022 ; 23(2) : 210-6. https://doi.org/10.1038/s41590-021-01113-x
- de Mello AH, Costa AB, Engel JDG, Rezin GT. Mitochondrial dysfunction in obesity. Life Sciences. 2018 ; 192 : 26-32. https://doi.org/10.1016/j.lfs.2017.11.019
- Wood E, Hall KH, Tate W. Role of mitochondria, oxidative stress and the response to antioxidants in myalgic encephalomyelitis/chronic fatigue syndrome: a possible approach to SARS-CoV-2 'long-haulers'? Chronic Dis Transl Med. 2021 ; 7(1) : 14-26.
- Paul BD, Lemle MD, Komaroff AL, Snyder SH. Redox imbalance links COVID-19 and myalgic encephalomyelitis/chronic fatigue syndrome. Proc Natl Acad Sci U S A. 2021 ; 118(34) : 2024358118.
- de Boer E, Petrache I, Goldstein NM, Olin JT, Keith RC, Modena B, et al. Decreased fatty acid oxidation and altered lactate production during exercise in patients with post-acute COVID-19 syndrome. Am J Respir Crit Care Med. 2022 ; 205(1) : 126-9. https://doi.org/10.1164/rccm.202108-1903LE
- Ye J, Gao Z, Yin J, He Q. Hypoxia is a potential risk factor for chronic inflammation and adiponectin reduction in adipose tissue of ob/ob and dietary obese mice. Am J Physiol Endocrinol Metab. 2007 ; 293(4) : 1118-28. https://doi.org/10.1152/ajpendo.00435.2007
- Pasarica M, Sereda OR, Redman LM, Albarado DC, Hymel DT, Roan LE, et al. Reduced adipose tissue oxygenation in human obesity: evidence for rarefaction, macrophage chemotaxis, and inflammation without an angiogenic response. Diabetes. 2009 ; 58(3) : 718-25. https://doi.org/10.2337/db08-1098
- Lee YS, Kim JW, Osborne O, Oh DY, Sasik R, Schenk S, et al. Increased adipocyte O2 consumption triggers HIF-1α, causing inflammation and insulin resistance in obesity. Cell. 2014 ; 157(6) : 1339-52. https://doi.org/10.1016/j.cell.2014.05.012
- Mazzatti D, Lim FL, O'Hara A, Wood IS, Trayhurn P. A microarray analysis of the hypoxia-induced modulation of gene expression in human adipocytes. Arch Physiol Biochem. 2012 ; 118(3) : 112-20. https://doi.org/10.3109/13813455.2012.654611
- Gaspar JM, Velloso LA. Hypoxia inducible factor as a central regulator of metabolism - implications for the development of obesity. Frontiers in Neuroscience. 2018 ; 12 : 813. https://doi.org/10.3389/fnins.2018.00813
- Lee K, Jeong S, Jeong M, Choi Y, Song M, Jang I. Review on herbal medicine treatment for late complications of COVID-19 patients. J Int Korean Med. 2021 ; 42(1) : 53-66. https://doi.org/10.22246/jikm.2021.42.1.53
- Liu J, Dong F, Robinson N. State-of-the-art evidence of traditional Chinese medicine for treating coronavirus disease 2019. Journal of Traditional Chinese Medical Sciences. 2022 ; 9(1) : 2-6. https://doi.org/10.1016/j.jtcms.2022.01.005
- Badakhsh M, Dastras M, Sarchahi Z, Doostkami M, Mir A, Bouya S. Complementary and alternative medicine therapies and COVID-19: a systematic review. Rev Environ Health. 2021 ; 36(3) : 443-50. https://doi.org/10.1515/reveh-2021-0012
- Park B-K, Kim NS, Kim YR, Yang C, Jung IC, Jang I-S, et al. Antidepressant and anti-neuroinflammatory effects of Bangpungtongsung-San. Frontiers in Pharmacology. 2020 ; 11 : 958. https://doi.org/10.3389/fphar.2020.00958
- Kim H-J, Park O-S, Kim K-S, Cha J-H, Kim Y-B. The effect of Bangpungtongsung-san on model of allergic rhinitis. The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology. 2006 ; 19(1) : 21-30.
- Lee CW, Kim SC, Kwak TW, Lee JR, Jo MJ, Ahn Y-T, et al. Anti-inflammatory effects of Bangpungtongsung-San, a traditional herbal prescription. Evidence-Based Complementary and Alternative Medicine. 2012 ; 2012 : 892943. https://doi.org/10.1155/2012/892943
- Lee M-Y, Shin I-S, Jeon W-Y, Shin N, Shin H-K. Bangpungtongseong-san, a traditional herbal medicine, attenuates chronic asthmatic effects induced by repeated ovalbumin challenge. International Journal of Molecular Medicine. 2014 ; 33(4) : 978-86. https://doi.org/10.3892/ijmm.2014.1654
- Park J-K, Shim J-Y, Cho A-R, Cho M-R, Lee Y-J. Korean red ginseng protects against mitochondrial damage and intracellular inflammation in an animal model of type 2 diabetes mellitus. Journal of Medicinal Food. 2018 ; 21(6) : 544-50. https://doi.org/10.1089/jmf.2017.4059
- Dong G-Z, Jang EJ, Kang SH, Cho IJ, Park S-D, Kim SC, et al. Red ginseng abrogates oxidative stress via mitochondria protection mediated by LKB1-AMPK pathway. BMC Complementary and Alternative Medicine. 2013 ; 13(1) : 1-9. https://doi.org/10.1186/1472-6882-13-1
- Shin SJ, Jeon SG, Kim J-I, Jeong Y-O, Kim S, Park YH, et al. Red ginseng attenuates Aβ-induced mitochondrial dysfunction and Aβ-mediated pathology in an animal model of Alzheimer's disease. International Journal of Molecular Sciences. 2019 ; 20(12) : 3030. https://doi.org/10.3390/ijms20123030
- Wang T, Li HT, Wei SZ, Cai HD, Zhu Y, Liu HH, et al. Use of network pharmacology and molecular docking to investigate the mechanism by which ginseng ameliorates hypoxia. Biomed Environ Sci. 2018 ; 31(11) : 855-8. https://doi.org/10.3967/bes2018.114
- Choi Y-J, Choi H, Cho C-H, Park J-W. Red ginseng deregulates hypoxia-induced genes by dissociating the HIF-1 dimer. Journal of Natural Medicines. 2011 ; 65(2) : 344-52. https://doi.org/10.1007/s11418-010-0504-8
- Lim W, Shim MK, Kim S, Lee Y. Red ginseng represses hypoxia-induced cyclooxygenase-2 through sirtuin1 activation. Phytomedicine. 2015 ; 22(6) : 597-604. https://doi.org/10.1016/j.phymed.2015.03.005
- Liu P, Zhao H, Luo Y. Anti-aging implications of Astragalus Membranaceus (Huangqi): a well-known Chinese tonic. Aging Dis. 2017 ; 8(6) : 868-86. https://doi.org/10.14336/AD.2017.0816
- Huang Y-F, Lu L, Zhu D-J, Wang M, Yin Y, Chen D-X, et al. Effects of astragalus polysaccharides on dysfunction of mitochondrial dynamics induced by oxidative stress. Oxidative Medicine and Cellular Longevity. 2016 ; 2016 : 9573291.
- Ma Q, Xu Y, Tang L, Yang X, Chen Z, Wei Y, et al. Astragalus polysaccharide attenuates cisplatin-induced acute kidney injury by suppressing oxidative damage and mitochondrial dysfunction. BioMed Research International. 2020 ; 2020 : 2851349.
- Cheng D, Yang X-J, Zhang L, Qin Z-S, Li W-Q, Xu H-C, et al. Tortoise plastron and deer antler gelatin prevents against neuronal mitochondrial dysfunction in vitro: implication for a potential therapy of Alzheimer's disease. Frontiers in Pharmacology. 2021 ; 12 : 1171.
- Ni Y, Wang Z, Ma L, Yang L, Wu T, Fu Z. Pilose antler polypeptides ameliorate inflammation and oxidative stress and improves gut microbiota in hypoxic-ischemic injured rats. Nutrition Research. 2019 ; 64 : 93-108. https://doi.org/10.1016/j.nutres.2019.01.005
- Ruan H, Wang L, Wang J, Sun H, He X, Li W, et al. Sika deer antler protein against acetaminophen-induced oxidative stress and apoptosis in HK-2 cells via activating Nrf2/keap1/HO-1 pathway. Journal of Food Biochemistry. 2019 ; 43(12) : 13067.
- Zhu W, Wang H, Zhang W, Xu N, Xu J, Li Y, et al. Protective effects and plausible mechanisms of antler-velvet polypeptide against hydrogen peroxide induced injury in human umbilical vein endothelial cells. Canadian Journal of Physiology and Pharmacology. 2017 ; 95(5) : 610-9. https://doi.org/10.1139/cjpp-2016-0196
- Yen T-L, Ong E-T, Lin K-H, Chang C-C, Jayakumar T, Lin S-C, et al. Potential advantages of Chinese medicine Taohong Siwu Decoction (桃红四物汤) combined with tissue-plasminogen activator for alleviating middle cerebral artery occlusion-induced embolic stroke in rats. Chinese Journal of Integrative Medicine. 2014 ; 20 : 1-9.
- Jinxia L, Xiaoqing Z, Caixing Z, Lina L, Ling L. Comparison of mechanisms and efficacies of five formulas for improving blood circulation and removing blood stasis. Digital Chinese Medicine. 2021 ; 4(2) : 144-58. https://doi.org/10.1016/j.dcmed.2021.06.007
- Liu S, Wang Z, Su Y, Qi L, Yang W, Fu M, et al. A neuroanatomical basis for electroacupuncture to drive the vagal-adrenal axis. Nature. 2021 ; 598(7882) : 641-5. https://doi.org/10.1038/s41586-021-04001-4
- Bao C, Wu L, Wang D, Chen L, Jin X, Shi Y, et al. Acupuncture improves the symptoms, intestinal microbiota, and inflammation of patients with mild to moderate Crohn's disease: a randomized controlled trial. EClinicalMedicine. 2022 ; 45 : 101300. https://doi.org/10.1016/j.eclinm.2022.101300
- Meng J-B, Jiao Y-N, Xu X-J, Lai Z-Z, Zhang G, JI C-L, et al. Electro-acupuncture attenuates inflammatory responses and intraabdominal pressure in septic patients: a randomized controlled trial. Medicine. 2018 ; 97(17) : 555.