References
- Adams, B.D., Parsons, C., Walker, L., Zhang, W.C., and Slack, F.J. (2017). Targeting noncoding RNAs in disease. J. Clin. Invest. 127, 761-771. https://doi.org/10.1172/jci84424
- Bhan, A., Soleimani, M., and Mandal, S.S. (2017). Long noncoding RNA and cancer: a new paradigm. Cancer Res. 77, 3965-3981.
- Bierhoff, H. (2018). Analysis of lncRNA-protein interactions by RNA-protein pull-down assays and RNA immunoprecipitation (RIP). Methods Mol. Biol. 1686, 241-250. https://doi.org/10.1007/978-1-4939-7371-2_17
- Garcia-Montoya, L., Gul, H., and Emery, P. (2018). Recent advances in ankylosing spondylitis: understanding the disease and management. F1000Res. 7, F1000 Faculty Rev-1512.
- Gu, Y., Xiao, X., and Yang, S. (2017). LncRNA MALAT1 acts as an oncogene in multiple myeloma through sponging miR-509-5p to modulate FOXP1 expression. Oncotarget 8, 101984-101993. https://doi.org/10.18632/oncotarget.21957
- Guo, X., Wu, X., Han, Y., Tian, E., and Cheng, J. (2019). LncRNA MALAT1 protects cardiomyocytes from isoproterenol-induced apoptosis through sponging miR-558 to enhance ULK1-mediated protective autophagy. J. Cell. Physiol. 234, 10842-10854. https://doi.org/10.1002/jcp.27925
- Han, Y., Qiu, H., Pei, X., Fan, Y., Tian, H., and Geng, J. (2018). Low-dose sinapic acid abates the pyroptosis of macrophages by downregulation of lncRNA-MALAT1 in rats with diabetic atherosclerosis. J. Cardiovasc. Pharmacol. 71, 104-112. https://doi.org/10.1097/FJC.0000000000000550
- He, D., Zheng, J., Hu, J., Chen, J., and Wei, X. (2020). Long non-coding RNAs and pyroptosis. Clin. Chim. Acta 504, 201-208. https://doi.org/10.1016/j.cca.2019.11.035
- He, W.T., Wan, H., Hu, L., Chen, P., Wang, X., Huang, Z., Yang, Z.H., Zhong, C.Q., and Han, J. (2015). Gasdermin D is an executor of pyroptosis and required for interleukin-1beta secretion. Cell Res. 25, 1285-1298. https://doi.org/10.1038/cr.2015.139
- Huang, D., Liu, J., Wan, L., Fang, Y., Long, Y., Zhang, Y., and Bao, B. (2021). Identification of lncRNAs associated with the pathogenesis of ankylosing spondylitis. BMC Musculoskelet. Disord. 22, 272. https://doi.org/10.1186/s12891-021-04119-6
- Kayagaki, N., Lee, B.L., Stowe, I.B., Kornfeld, O.S., O'Rourke, K., Mirrashidi, K.M., Haley, B., Watanabe, C., Roose-Girma, M., Modrusan, Z., et al. (2019). IRF2 transcriptionally induces GSDMD expression for pyroptosis. Sci. Signal. 12, eaax4917. https://doi.org/10.1126/scisignal.aax4917
- Lai, N.S., Yu, H.C., Chen, H.C., Yu, C.L., Huang, H.B., and Lu, M.C. (2013). Aberrant expression of microRNAs in T cells from patients with ankylosing spondylitis contributes to the immunopathogenesis. Clin. Exp. Immunol. 173, 47-57. https://doi.org/10.1111/cei.12089
- Lamkanfi, M. and Dixit, V.M. (2014). Mechanisms and functions of inflammasomes. Cell 157, 1013-1022. https://doi.org/10.1016/j.cell.2014.04.007
- Li, H., Yang, H.H., Sun, Z.G., Tang, H.B., and Min, J.K. (2019). Whole-transcriptome sequencing of knee joint cartilage from osteoarthritis patients. Bone Joint Res. 8, 290-303. https://doi.org/10.1302/2046-3758.87.BJR-2018-0297.R1
- Li, X., Zeng, L., Cao, C., Lu, C., Lian, W., Han, J., Zhang, X., Zhang, J., Tang, T., and Li, M. (2017). Long noncoding RNA MALAT1 regulates renal tubular epithelial pyroptosis by modulated miR-23c targeting of ELAVL1 in diabetic nephropathy. Exp. Cell Res. 350, 327-335. https://doi.org/10.1016/j.yexcr.2016.12.006
- Liu, C., Zhuo, H., Ye, M.Y., Huang, G.X., Fan, M., and Huang, X.Z. (2020). LncRNA MALAT1 promoted high glucose-induced pyroptosis of renal tubular epithelial cell by sponging miR-30c targeting for NLRP3. Kaohsiung J. Med. Sci. 36, 682-691. https://doi.org/10.1002/kjm2.12226
- Liu, X. and Lieberman, J. (2017). A mechanistic understanding of pyroptosis: the fiery death triggered by invasive infection. Adv. Immunol. 135, 81-117. https://doi.org/10.1016/bs.ai.2017.02.002
- McKenzie, B.A., Dixit, V.M., and Power, C. (2020). Fiery cell death: pyroptosis in the central nervous system. Trends Neurosci. 43, 55-73. https://doi.org/10.1016/j.tins.2019.11.005
- Mohammadi, H., Hemmatzadeh, M., Babaie, F., Gowhari Shabgah, A., Azizi, G., Hosseini, F., Majidi, J., and Baradaran, B. (2018). MicroRNA implications in the etiopathogenesis of ankylosing spondylitis. J. Cell. Physiol. 233, 5564-5573. https://doi.org/10.1002/jcp.26500
- Nejad, C., Stunden, H.J., and Gantier, M.P. (2018). A guide to miRNAs in inflammation and innate immune responses. FEBS J. 285, 3695-3716. https://doi.org/10.1111/febs.14482
- Park, S.J., Cheon, E.J., and Kim, H.A. (2013). MicroRNA-558 regulates the expression of cyclooxygenase-2 and IL-1beta-induced catabolic effects in human articular chondrocytes. Osteoarthritis Cartilage 21, 981-989. https://doi.org/10.1016/j.joca.2013.04.012
- Puthanveetil, P., Chen, S., Feng, B., Gautam, A., and Chakrabarti, S. (2015). Long non-coding RNA MALAT1 regulates hyperglycaemia induced inflammatory process in the endothelial cells. J. Cell. Mol. Med. 19, 1418-1425. https://doi.org/10.1111/jcmm.12576
- Raychaudhuri, S.P. and Deodhar, A. (2014). The classification and diagnostic criteria of ankylosing spondylitis. J. Autoimmun. 48-49, 128-133. https://doi.org/10.1016/j.jaut.2014.01.015
- Shi, J., Zhao, Y., Wang, K., Shi, X., Wang, Y., Huang, H., Zhuang, Y., Cai, T., Wang, F., and Shao, F. (2015). Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526, 660-665. https://doi.org/10.1038/nature15514
- Soares, R.J., Maglieri, G., Gutschner, T., Diederichs, S., Lund, A.H., Nielsen, B.S., and Holmstrom, K. (2018). Evaluation of fluorescence in situ hybridization techniques to study long non-coding RNA expression in cultured cells. Nucleic Acids Res. 46, e4. https://doi.org/10.1093/nar/gkx946
- Tay, Y., Rinn, J., and Pandolfi, P.P. (2014). The multilayered complexity of ceRNA crosstalk and competition. Nature 505, 344-352. https://doi.org/10.1038/nature12986
- Wang, Y., Zhang, Y., Yang, T., Zhao, W., Wang, N., Li, P., Zeng, X., and Zhang, W. (2017). Long non-coding RNA MALAT1 for promoting metastasis and proliferation by acting as a ceRNA of miR-144-3p in osteosarcoma cells. Oncotarget 8, 59417-59434. https://doi.org/10.18632/oncotarget.19727
- Wenker, K.J. and Quint, J.M. (2021). Ankylosing spondylitis. In StatPearls [Internet], B. Abai, ed. (Treasure Island: StatPearls Publishing).
- Xi, Y., Jiang, T., Chaurasiya, B., Zhou, Y., Yu, J., Wen, J., Shen, Y., Ye, X., and Webster, T.J. (2019). Advances in nanomedicine for the treatment of ankylosing spondylitis. Int. J. Nanomedicine 14, 8521-8542. https://doi.org/10.2147/IJN.S216199
- Xie, Z., Li, J., Wang, P., Li, Y., Wu, X., Wang, S., Su, H., Deng, W., Liu, Z., Cen, S., et al. (2016). Differential expression profiles of long noncoding RNA and mRNA of osteogenically differentiated mesenchymal stem cells in ankylosing spondylitis. J. Rheumatol. 43, 1523-1531. https://doi.org/10.3899/jrheum.151181
- Xing, Z., Lin, C., and Yang, L. (2016). LncRNA pulldown combined with mass spectrometry to identify the novel lncRNA-associated proteins. Methods Mol. Biol. 1402, 1-9. https://doi.org/10.1007/978-1-4939-3378-5_1
- Xu, B., Jiang, M., Chu, Y., Wang, W., Chen, D., Li, X., Zhang, Z., Zhang, D., Fan, D., Nie, Y., et al. (2018). Gasdermin D plays a key role as a pyroptosis executor of non-alcoholic steatohepatitis in humans and mice. J. Hepatol. 68, 773-782. https://doi.org/10.1016/j.jhep.2017.11.040
- Yang, J., Liu, Z., Wang, C., Yang, R., Rathkey, J.K., Pinkard, O.W., Shi, W., Chen, Y., Dubyak, G.R., Abbott, D.W., et al. (2018). Mechanism of gasdermin D recognition by inflammatory caspases and their inhibition by a gasdermin D-derived peptide inhibitor. Proc. Natl. Acad. Sci. U. S. A. 115, 6792-6797. https://doi.org/10.1073/pnas.1800562115
- Zhang, C., Wang, C., Jia, Z., Tong, W., Liu, D., He, C., Huang, X., and Xu, W. (2017). Differentially expressed mRNAs, lncRNAs, and miRNAs with associated co-expression and ceRNA networks in ankylosing spondylitis. Oncotarget 8, 113543-113557. https://doi.org/10.18632/oncotarget.22708
- Zhou, H.J., Wang, L.Q., Wang, D.B., Yu, J.B., Zhu, Y., Xu, Q.S., Zheng, X.J., and Zhan, R.Y. (2018). Long noncoding RNA MALAT1 contributes to inflammatory response of microglia following spinal cord injury via the modulation of a miR-199b/IKKbeta/NF-kappaB signaling pathway. Am. J. Physiol. Cell Physiol. 315, C52-C61. https://doi.org/10.1152/ajpcell.00278.2017