DOI QR코드

DOI QR Code

The Molecular Mechanism of Long Non-Coding RNA MALAT1-Mediated Regulation of Chondrocyte Pyroptosis in Ankylosing Spondylitis

  • Chen, Wei (Department of Orthopaedics, The First People's Hospital of Yongkang, Affiliated to Hangzhou Medical College) ;
  • Wang, Feilong (Department of Orthopaedics, The First People's Hospital of Yongkang, Affiliated to Hangzhou Medical College) ;
  • Wang, Jiangtao (Department of Orthopaedics, The First People's Hospital of Yongkang, Affiliated to Hangzhou Medical College) ;
  • Chen, Fuyu (Department of Orthopaedics, The First People's Hospital of Yongkang, Affiliated to Hangzhou Medical College) ;
  • Chen, Ting (Department of Pediatric Orthopaedic, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine)
  • Received : 2021.09.09
  • Accepted : 2021.12.26
  • Published : 2022.06.30

Abstract

Long non-coding RNAs (lncRNAs) may be important regulators in the progression of ankylosing spondylitis (AS). The competing endogenous RNA (ceRNA) activity of lncRNAs plays crucial roles in osteogenesis. We identified the mechanism of the differentially expressed lncRNA MALAT1 in AS using bioinformatic analysis and its ceRNA mechanism. The interaction of MALAT1, microRNA-558, and GSDMD was identified using integrated bioinformatics analysis and validated. Loss- and gain-of-function assays evaluated their effects on the viability, apoptosis, pyroptosis and inflammation of chondrocytes in AS. We found elevated MALAT1 and GSDMD but reduced miR-558 in AS cartilage tissues and chondrocytes. MALAT1 contributed to the suppression of cell viability and facilitated apoptosis and pyroptosis in AS chondrocytes. GSDMD was a potential target gene of miR-558. Depletion of MALAT1 expression elevated miR-558 by inhibiting GSDMD to enhance cell viability and inhibit inflammation, apoptosis and pyroptosis of chondrocytes in AS. In summary, our key findings demonstrated that knockdown of MALAT1 served as a potential suppressor of AS by upregulating miR-558 via the downregulation of GSDMD expression.

Keywords

References

  1. Adams, B.D., Parsons, C., Walker, L., Zhang, W.C., and Slack, F.J. (2017). Targeting noncoding RNAs in disease. J. Clin. Invest. 127, 761-771. https://doi.org/10.1172/jci84424
  2. Bhan, A., Soleimani, M., and Mandal, S.S. (2017). Long noncoding RNA and cancer: a new paradigm. Cancer Res. 77, 3965-3981.
  3. Bierhoff, H. (2018). Analysis of lncRNA-protein interactions by RNA-protein pull-down assays and RNA immunoprecipitation (RIP). Methods Mol. Biol. 1686, 241-250. https://doi.org/10.1007/978-1-4939-7371-2_17
  4. Garcia-Montoya, L., Gul, H., and Emery, P. (2018). Recent advances in ankylosing spondylitis: understanding the disease and management. F1000Res. 7, F1000 Faculty Rev-1512.
  5. Gu, Y., Xiao, X., and Yang, S. (2017). LncRNA MALAT1 acts as an oncogene in multiple myeloma through sponging miR-509-5p to modulate FOXP1 expression. Oncotarget 8, 101984-101993. https://doi.org/10.18632/oncotarget.21957
  6. Guo, X., Wu, X., Han, Y., Tian, E., and Cheng, J. (2019). LncRNA MALAT1 protects cardiomyocytes from isoproterenol-induced apoptosis through sponging miR-558 to enhance ULK1-mediated protective autophagy. J. Cell. Physiol. 234, 10842-10854. https://doi.org/10.1002/jcp.27925
  7. Han, Y., Qiu, H., Pei, X., Fan, Y., Tian, H., and Geng, J. (2018). Low-dose sinapic acid abates the pyroptosis of macrophages by downregulation of lncRNA-MALAT1 in rats with diabetic atherosclerosis. J. Cardiovasc. Pharmacol. 71, 104-112. https://doi.org/10.1097/FJC.0000000000000550
  8. He, D., Zheng, J., Hu, J., Chen, J., and Wei, X. (2020). Long non-coding RNAs and pyroptosis. Clin. Chim. Acta 504, 201-208. https://doi.org/10.1016/j.cca.2019.11.035
  9. He, W.T., Wan, H., Hu, L., Chen, P., Wang, X., Huang, Z., Yang, Z.H., Zhong, C.Q., and Han, J. (2015). Gasdermin D is an executor of pyroptosis and required for interleukin-1beta secretion. Cell Res. 25, 1285-1298. https://doi.org/10.1038/cr.2015.139
  10. Huang, D., Liu, J., Wan, L., Fang, Y., Long, Y., Zhang, Y., and Bao, B. (2021). Identification of lncRNAs associated with the pathogenesis of ankylosing spondylitis. BMC Musculoskelet. Disord. 22, 272. https://doi.org/10.1186/s12891-021-04119-6
  11. Kayagaki, N., Lee, B.L., Stowe, I.B., Kornfeld, O.S., O'Rourke, K., Mirrashidi, K.M., Haley, B., Watanabe, C., Roose-Girma, M., Modrusan, Z., et al. (2019). IRF2 transcriptionally induces GSDMD expression for pyroptosis. Sci. Signal. 12, eaax4917. https://doi.org/10.1126/scisignal.aax4917
  12. Lai, N.S., Yu, H.C., Chen, H.C., Yu, C.L., Huang, H.B., and Lu, M.C. (2013). Aberrant expression of microRNAs in T cells from patients with ankylosing spondylitis contributes to the immunopathogenesis. Clin. Exp. Immunol. 173, 47-57. https://doi.org/10.1111/cei.12089
  13. Lamkanfi, M. and Dixit, V.M. (2014). Mechanisms and functions of inflammasomes. Cell 157, 1013-1022. https://doi.org/10.1016/j.cell.2014.04.007
  14. Li, H., Yang, H.H., Sun, Z.G., Tang, H.B., and Min, J.K. (2019). Whole-transcriptome sequencing of knee joint cartilage from osteoarthritis patients. Bone Joint Res. 8, 290-303. https://doi.org/10.1302/2046-3758.87.BJR-2018-0297.R1
  15. Li, X., Zeng, L., Cao, C., Lu, C., Lian, W., Han, J., Zhang, X., Zhang, J., Tang, T., and Li, M. (2017). Long noncoding RNA MALAT1 regulates renal tubular epithelial pyroptosis by modulated miR-23c targeting of ELAVL1 in diabetic nephropathy. Exp. Cell Res. 350, 327-335. https://doi.org/10.1016/j.yexcr.2016.12.006
  16. Liu, C., Zhuo, H., Ye, M.Y., Huang, G.X., Fan, M., and Huang, X.Z. (2020). LncRNA MALAT1 promoted high glucose-induced pyroptosis of renal tubular epithelial cell by sponging miR-30c targeting for NLRP3. Kaohsiung J. Med. Sci. 36, 682-691. https://doi.org/10.1002/kjm2.12226
  17. Liu, X. and Lieberman, J. (2017). A mechanistic understanding of pyroptosis: the fiery death triggered by invasive infection. Adv. Immunol. 135, 81-117. https://doi.org/10.1016/bs.ai.2017.02.002
  18. McKenzie, B.A., Dixit, V.M., and Power, C. (2020). Fiery cell death: pyroptosis in the central nervous system. Trends Neurosci. 43, 55-73. https://doi.org/10.1016/j.tins.2019.11.005
  19. Mohammadi, H., Hemmatzadeh, M., Babaie, F., Gowhari Shabgah, A., Azizi, G., Hosseini, F., Majidi, J., and Baradaran, B. (2018). MicroRNA implications in the etiopathogenesis of ankylosing spondylitis. J. Cell. Physiol. 233, 5564-5573. https://doi.org/10.1002/jcp.26500
  20. Nejad, C., Stunden, H.J., and Gantier, M.P. (2018). A guide to miRNAs in inflammation and innate immune responses. FEBS J. 285, 3695-3716. https://doi.org/10.1111/febs.14482
  21. Park, S.J., Cheon, E.J., and Kim, H.A. (2013). MicroRNA-558 regulates the expression of cyclooxygenase-2 and IL-1beta-induced catabolic effects in human articular chondrocytes. Osteoarthritis Cartilage 21, 981-989. https://doi.org/10.1016/j.joca.2013.04.012
  22. Puthanveetil, P., Chen, S., Feng, B., Gautam, A., and Chakrabarti, S. (2015). Long non-coding RNA MALAT1 regulates hyperglycaemia induced inflammatory process in the endothelial cells. J. Cell. Mol. Med. 19, 1418-1425. https://doi.org/10.1111/jcmm.12576
  23. Raychaudhuri, S.P. and Deodhar, A. (2014). The classification and diagnostic criteria of ankylosing spondylitis. J. Autoimmun. 48-49, 128-133. https://doi.org/10.1016/j.jaut.2014.01.015
  24. Shi, J., Zhao, Y., Wang, K., Shi, X., Wang, Y., Huang, H., Zhuang, Y., Cai, T., Wang, F., and Shao, F. (2015). Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526, 660-665. https://doi.org/10.1038/nature15514
  25. Soares, R.J., Maglieri, G., Gutschner, T., Diederichs, S., Lund, A.H., Nielsen, B.S., and Holmstrom, K. (2018). Evaluation of fluorescence in situ hybridization techniques to study long non-coding RNA expression in cultured cells. Nucleic Acids Res. 46, e4. https://doi.org/10.1093/nar/gkx946
  26. Tay, Y., Rinn, J., and Pandolfi, P.P. (2014). The multilayered complexity of ceRNA crosstalk and competition. Nature 505, 344-352. https://doi.org/10.1038/nature12986
  27. Wang, Y., Zhang, Y., Yang, T., Zhao, W., Wang, N., Li, P., Zeng, X., and Zhang, W. (2017). Long non-coding RNA MALAT1 for promoting metastasis and proliferation by acting as a ceRNA of miR-144-3p in osteosarcoma cells. Oncotarget 8, 59417-59434. https://doi.org/10.18632/oncotarget.19727
  28. Wenker, K.J. and Quint, J.M. (2021). Ankylosing spondylitis. In StatPearls [Internet], B. Abai, ed. (Treasure Island: StatPearls Publishing).
  29. Xi, Y., Jiang, T., Chaurasiya, B., Zhou, Y., Yu, J., Wen, J., Shen, Y., Ye, X., and Webster, T.J. (2019). Advances in nanomedicine for the treatment of ankylosing spondylitis. Int. J. Nanomedicine 14, 8521-8542. https://doi.org/10.2147/IJN.S216199
  30. Xie, Z., Li, J., Wang, P., Li, Y., Wu, X., Wang, S., Su, H., Deng, W., Liu, Z., Cen, S., et al. (2016). Differential expression profiles of long noncoding RNA and mRNA of osteogenically differentiated mesenchymal stem cells in ankylosing spondylitis. J. Rheumatol. 43, 1523-1531. https://doi.org/10.3899/jrheum.151181
  31. Xing, Z., Lin, C., and Yang, L. (2016). LncRNA pulldown combined with mass spectrometry to identify the novel lncRNA-associated proteins. Methods Mol. Biol. 1402, 1-9. https://doi.org/10.1007/978-1-4939-3378-5_1
  32. Xu, B., Jiang, M., Chu, Y., Wang, W., Chen, D., Li, X., Zhang, Z., Zhang, D., Fan, D., Nie, Y., et al. (2018). Gasdermin D plays a key role as a pyroptosis executor of non-alcoholic steatohepatitis in humans and mice. J. Hepatol. 68, 773-782. https://doi.org/10.1016/j.jhep.2017.11.040
  33. Yang, J., Liu, Z., Wang, C., Yang, R., Rathkey, J.K., Pinkard, O.W., Shi, W., Chen, Y., Dubyak, G.R., Abbott, D.W., et al. (2018). Mechanism of gasdermin D recognition by inflammatory caspases and their inhibition by a gasdermin D-derived peptide inhibitor. Proc. Natl. Acad. Sci. U. S. A. 115, 6792-6797. https://doi.org/10.1073/pnas.1800562115
  34. Zhang, C., Wang, C., Jia, Z., Tong, W., Liu, D., He, C., Huang, X., and Xu, W. (2017). Differentially expressed mRNAs, lncRNAs, and miRNAs with associated co-expression and ceRNA networks in ankylosing spondylitis. Oncotarget 8, 113543-113557. https://doi.org/10.18632/oncotarget.22708
  35. Zhou, H.J., Wang, L.Q., Wang, D.B., Yu, J.B., Zhu, Y., Xu, Q.S., Zheng, X.J., and Zhan, R.Y. (2018). Long noncoding RNA MALAT1 contributes to inflammatory response of microglia following spinal cord injury via the modulation of a miR-199b/IKKbeta/NF-kappaB signaling pathway. Am. J. Physiol. Cell Physiol. 315, C52-C61. https://doi.org/10.1152/ajpcell.00278.2017