DOI QR코드

DOI QR Code

Protective Role of miR-34c in Hypoxia by Activating Autophagy through BCL2 Repression

  • Kim, Soyoung (Department of Convergence Medicine & Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Han, Jaeseok (Department of Convergence Medicine & Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Ahn, Young-Ho (Department of Molecular Medicine, College of Medicine, Ewha Womans University) ;
  • Ha, Chang Hoon (Department of Convergence Medicine & Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Hwang, Jung Jin (Department of Convergence Medicine & Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Lee, Sang-Eun (Division of Cardiology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Kim, Jae-Joong (Division of Cardiology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Kim, Nayoung (Department of Convergence Medicine & Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine)
  • 투고 : 2021.10.28
  • 심사 : 2022.02.24
  • 발행 : 2022.06.30

초록

Hypoxia leads to significant cellular stress that has diverse pathological consequences such as cardiovascular diseases and cancers. MicroRNAs (miRNAs) are one of regulators of the adaptive pathway in hypoxia. We identified a hypoxia-induced miRNA, miR-34c, that was significantly upregulated in hypoxic human umbilical cord vein endothelial cells (HUVECs) and in murine blood vessels on day 3 of hindlimb ischemia (HLI). miR-34c directly inhibited BCL2 expression, acting as a toggle switch between apoptosis and autophagy in vitro and in vivo. BCL2 repression by miR-34c activated autophagy, which was evaluated by the expression of LC3-II. Overexpression of miR-34c inhibited apoptosis in HUVEC as well as in a murine model of HLI, and increased cell viability in HUVEC. Importantly, the number of viable cells in the blood vessels following HLI was increased by miR-34c overexpression. Collectively, our findings show that miR-34c plays a protective role in hypoxia, suggesting a novel therapeutic target for hypoxic and ischemic diseases in the blood vessels.

키워드

과제정보

This research was supported by Basic Science Research Program through National Research Foundation of Korea (NRF) funded by Ministry of Science and ICT (grant No. 2019R1A2C1008880) and by Ministry of Education (grant No. 2016R1D1A1B03933929).

참고문헌

  1. Akkoc, Y. and Gozuacik, D. (2020). MicroRNAs as major regulators of the autophagy pathway. Biochim. Biophys. Acta Mol. Cell Res. 1867, 118662. https://doi.org/10.1016/j.bbamcr.2020.118662
  2. Azimi, I., Petersen, R.M., Thompson, E.W., Roberts-Thomson, S.J., and Monteith, G.R. (2017). Hypoxia-induced reactive oxygen species mediate N-cadherin and SERPINE1 expression, EGFR signalling and motility in MDA-MB-468 breast cancer cells. Sci. Rep. 7, 15140. https://doi.org/10.1038/s41598-017-15474-7
  3. Baek, D., Villen, J., Shin, C., Camargo, F.D., Gygi, S.P., and Bartel, D.P. (2008). The impact of microRNAs on protein output. Nature 455, 64-71. https://doi.org/10.1038/nature07242
  4. Bellot, G., Garcia-Medina, R., Gounon, P., Chiche, J., Roux, D., Pouyssegur, J., and Mazure, N.M. (2009). Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol. Cell. Biol. 29, 2570-2581. https://doi.org/10.1128/MCB.00166-09
  5. Bernardo, B.C., Gao, X.M., Winbanks, C.E., Boey, E.J., Tham, Y.K., Kiriazis, H., Gregorevic, P., Obad, S., Kauppinen, S., Du, X.J., et al. (2012). Therapeutic inhibition of the miR-34 family attenuates pathological cardiac remodeling and improves heart function. Proc. Natl. Acad. Sci. U. S. A. 109, 17615-17620. https://doi.org/10.1073/pnas.1206432109
  6. Bushati, N. and Cohen, S.M. (2007). microRNA functions. Annu. Rev. Cell Dev. Biol. 23, 175-205. https://doi.org/10.1146/annurev.cellbio.23.090506.123406
  7. Chen, Z., Lai, T.C., Jan, Y.H., Lin, F.M., Wang, W.C., Xiao, H., Wang, Y.T., Sun, W., Cui, X., Li, Y.S., et al. (2013). Hypoxia-responsive miRNAs target argonaute 1 to promote angiogenesis. J. Clin. Invest. 123, 1057-1067. https://doi.org/10.1172/JCI65344
  8. Choe, N., Kwon, J.S., Kim, Y.S., Eom, G.H., Ahn, Y.K., Baik, Y.H., Park, H.Y., and Kook, H. (2015). The microRNA miR-34c inhibits vascular smooth muscle cell proliferation and neointimal hyperplasia by targeting stem cell factor. Cell. Signal. 27, 1056-1065. https://doi.org/10.1016/j.cellsig.2014.12.022
  9. Decuypere, J.P., Parys, J.B., and Bultynck, G. (2012). Regulation of the autophagic bcl-2/beclin 1 interaction. Cells 1, 284-312. https://doi.org/10.3390/cells1030284
  10. Del Principe, M.I., Dal Bo, M., Bittolo, T., Buccisano, F., Rossi, F.M., Zucchetto, A., Rossi, D., Bomben, R., Maurillo, L., Cefalo, M., et al. (2016). Clinical significance of bax/bcl-2 ratio in chronic lymphocytic leukemia. Haematologica 101, 77-85. https://doi.org/10.3324/haematol.2015.131854
  11. Feng, L., Ma, Y., Sun, J., Shen, Q., Liu, L., Lu, H., Wang, F., Yue, Y., Li, J., Zhang, S., et al. (2014). YY1-MIR372-SQSTM1 regulatory axis in autophagy. Autophagy 10, 1442-1453. https://doi.org/10.4161/auto.29486
  12. Fernandez, A.F., Sebti, S., Wei, Y., Zou, Z., Shi, M., McMillan, K.L., He, C., Ting, T., Liu, Y., Chiang, W.C., et al. (2018). Disruption of the beclin 1-BCL2 autophagy regulatory complex promotes longevity in mice. Nature 558, 136-140. https://doi.org/10.1038/s41586-018-0162-7
  13. Glick, D., Barth, S., and Macleod, K.F. (2010). Autophagy: cellular and molecular mechanisms. J. Pathol. 221, 3-12. https://doi.org/10.1002/path.2697
  14. Guo, F., Tang, C., Huang, B., Gu, L., Zhou, J., Mo, Z., Liu, C., and Liu, Y. (2022). LncRNA H19 drives proliferation of cardiac fibroblasts and collagen production via suppression of the miR-29a-3p/miR-29b-3pVEGFA/TGF-beta axis. Mol. Cells 45, 122-133. https://doi.org/10.14348/molcells.2021.0066
  15. Gurusamy, N., Lekli, I., Gorbunov, N.V., Gherghiceanu, M., Popescu, L.M., and Das, D.K. (2009). Cardioprotection by adaptation to ischaemia augments autophagy in association with BAG-1 protein. J. Cell. Mol. Med. 13, 373-387. https://doi.org/10.1111/j.1582-4934.2008.00495.x
  16. Gustafsson, A.B. and Gottlieb, R.A. (2009). Autophagy in ischemic heart disease. Circ. Res. 104, 150-158. https://doi.org/10.1161/CIRCRESAHA.108.187427
  17. Han, F., Li, C.F., Cai, Z., Zhang, X., Jin, G., Zhang, W.N., Xu, C., Wang, C.Y., Morrow, J., Zhang, S., et al. (2018). The critical role of AMPK in driving Akt activation under stress, tumorigenesis and drug resistance. Nat. Commun. 9, 4728. https://doi.org/10.1038/s41467-018-07188-9
  18. Jang, K.H., Hwang, Y., and Kim, E. (2020). PARP1 impedes SIRT1-mediated autophagy during degeneration of the retinal pigment epithelium under oxidative stress. Mol. Cells 43, 632-644. https://doi.org/10.14348/molcells.2020.0078
  19. Kale, J., Osterlund, E.J., and Andrews, D.W. (2018). BCL-2 family proteins: changing partners in the dance towards death. Cell Death Differ. 25, 65-80. https://doi.org/10.1038/cdd.2017.186
  20. Kim, J.S., Kim, E.J., Lee, S., Tan, X., Liu, X., Park, S., Kang, K., Yoon, J.S., Ko, Y.H., Kurie, J.M., et al. (2019). MiR-34a and miR-34b/c have distinct effects on the suppression of lung adenocarcinomas. Exp. Mol. Med. 51, 1-10.
  21. Lee, H.E., Park, S.J., Huh, J.W., Imai, H., and Kim, H.S. (2020a). Enhancer function of microRNA-3681 derived from long terminal repeats represses the activity of variable number tandem repeats in the 3' UTR of SHISA7. Mol. Cells 43, 607-618. https://doi.org/10.14348/molcells.2020.0058
  22. Lee, P., Chandel, N.S., and Simon, M.C. (2020b). Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. Nat. Rev. Mol. Cell Biol. 21, 268-283. https://doi.org/10.1038/s41580-020-0227-y
  23. Li, R., Zhang, H., and Zheng, X. (2018). MiR-34c induces apoptosis and inhibits the viability of M4e cells by targeting BCL2. Oncol. Lett. 15, 3357-3361.
  24. Liang, H., Su, X., Wu, Q., Shan, H., Lv, L., Yu, T., Zhao, X., Sun, J., Yang, R., Zhang, L., et al. (2020). LncRNA 2810403D21Rik/Mirf promotes ischemic myocardial injury by regulating autophagy through targeting Mir26a. Autophagy 16, 1077-1091. https://doi.org/10.1080/15548627.2019.1659610
  25. Liang, X., Zhou, D., Wei, C., Luo, H., Liu, J., Fu, R., and Cui, S. (2012). MicroRNA-34c enhances murine male germ cell apoptosis through targeting ATF1. PLoS One 7, e33861. https://doi.org/10.1371/journal.pone.0033861
  26. Liu, W.J., Ye, L., Huang, W.F., Guo, L.J., Xu, Z.G., Wu, H.L., Yang, C., and Liu, H.F. (2016). p62 links the autophagy pathway and the ubiquitin-proteasome system upon ubiquitinated protein degradation. Cell. Mol. Biol. Lett. 21, 29. https://doi.org/10.1186/s11658-016-0031-z
  27. Maiuri, M.C., Le Toumelin, G., Criollo, A., Rain, J.C., Gautier, F., Juin, P., Tasdemir, E., Pierron, G., Troulinaki, K., Tavernarakis, N., et al. (2007). Functional and physical interaction between Bcl-X(L) and a BH3-like domain in Beclin-1. EMBO J. 26, 2527-2539. https://doi.org/10.1038/sj.emboj.7601689
  28. Marino, G., Niso-Santano, M., Baehrecke, E.H., and Kroemer, G. (2014). Self-consumption: the interplay of autophagy and apoptosis. Nat. Rev. Mol. Cell Biol. 15, 81-94. https://doi.org/10.1038/nrm3735
  29. Marquez, R.T. and Xu, L. (2012). Bcl-2:Beclin 1 complex: multiple, mechanisms regulating autophagy/apoptosis toggle switch. Am. J. Cancer Res. 2, 214-221.
  30. Michiels, C. (2004). Physiological and pathological responses to hypoxia. Am. J. Pathol. 164, 1875-1882. https://doi.org/10.1016/S0002-9440(10)63747-9
  31. Mizushima, N., Yoshimori, T., and Levine, B. (2010). Methods in mammalian autophagy research. Cell 140, 313-326. https://doi.org/10.1016/j.cell.2010.01.028
  32. Nallamshetty, S., Chan, S.Y., and Loscalzo, J. (2013). Hypoxia: a master regulator of microRNA biogenesis and activity. Free Radic. Biol. Med. 64, 20-30. https://doi.org/10.1016/j.freeradbiomed.2013.05.022
  33. Pattingre, S., Tassa, A., Qu, X., Garuti, R., Liang, X.H., Mizushima, N., Packer, M., Schneider, M.D., and Levine, B. (2005). Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122, 927-939. https://doi.org/10.1016/j.cell.2005.07.002
  34. Pekarsky, Y., Balatti, V., and Croce, C.M. (2018). BCL2 and miR-15/16: from gene discovery to treatment. Cell Death Differ. 25, 21-26. https://doi.org/10.1038/cdd.2017.159
  35. Perlman, H., Zhang, X., Chen, M.W., Walsh, K., and Buttyan, R. (1999). An elevated bax/bcl-2 ratio corresponds with the onset of prostate epithelial cell apoptosis. Cell Death Differ. 6, 48-54. https://doi.org/10.1038/sj/cdd/4400453
  36. Pighi, M., Gratta, A., Marin, F., Bellamoli, M., Lunardi, M., Fezzi, S., Zivelonghi, C., Pesarini, G., Tomai, F., and Ribichini, F. (2020). "Cardiac allograft vasculopathy: pathogenesis, diagnosis and therapy". Transplant. Rev. (Orlando) 34, 100569. https://doi.org/10.1016/j.trre.2020.100569
  37. Qi, Z., Dong, W., Shi, W., Wang, R., Zhang, C., Zhao, Y., Ji, X., Liu, K.J., and Luo, Y. (2015). Bcl-2 phosphorylation triggers autophagy switch and reduces mitochondrial damage in limb remote ischemic conditioned rats after ischemic stroke. Transl. Stroke Res. 6, 198-206. https://doi.org/10.1007/s12975-015-0393-y
  38. Schmauss, D. and Weis, M. (2008). Cardiac allograft vasculopathy: recent developments. Circulation 117, 2131-2141. https://doi.org/10.1161/CIRCULATIONAHA.107.711911
  39. Selbach, M., Schwanhausser, B., Thierfelder, N., Fang, Z., Khanin, R., and Rajewsky, N. (2008). Widespread changes in protein synthesis induced by microRNAs. Nature 455, 58-63. https://doi.org/10.1038/nature07228
  40. Singh, N., Heggermont, W., Fieuws, S., Vanhaecke, J., Van Cleemput, J., and De Geest, B. (2015). Endothelium-enriched microRNAs as diagnostic biomarkers for cardiac allograft vasculopathy. J. Heart Lung Transplant. 34, 1376-1384. https://doi.org/10.1016/j.healun.2015.06.008
  41. Stegen, S., van Gastel, N., Eelen, G., Ghesquiere, B., D'Anna, F., Thienpont, B., Goveia, J., Torrekens, S., Van Looveren, R., Luyten, F.P., et al. (2016). HIF-1alpha promotes glutamine-mediated redox homeostasis and glycogen-dependent bioenergetics to support postimplantation bone cell survival. Cell Metab. 23, 265-279. https://doi.org/10.1016/j.cmet.2016.01.002
  42. Tan, Q., Wang, M., Yu, M., Zhang, J., Bristow, R.G., Hill, R.P., and Tannock, I.F. (2016). Role of autophagy as a survival mechanism for hypoxic cells in tumors. Neoplasia 18, 347-355. https://doi.org/10.1016/j.neo.2016.04.003
  43. Wu, Y., Dai, X., Ni, Z., Yan, X., He, F., and Lian, J. (2017). The downregulation of ATG4B mediated by microRNA-34a/34c-5p suppresses rapamycin-induced autophagy. Iran. J. Basic Med. Sci. 20, 1125-1130.
  44. Xu, X., Wang, S., Liu, J., Dou, D., Liu, L., Chen, Z., Ye, L., Liu, H., He, Q., Raj, J.U., et al. (2012). Hypoxia induces downregulation of soluble guanylyl cyclase beta1 by miR-34c-5p. J. Cell Sci. 125, 6117-6126. https://doi.org/10.1242/jcs.113381
  45. Zhang, H., Bosch-Marce, M., Shimoda, L.A., Tan, Y.S., Baek, J.H., Wesley, J.B., Gonzalez, F.J., and Semenza, G.L. (2008). Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J. Biol. Chem. 283, 10892-10903. https://doi.org/10.1074/jbc.M800102200
  46. Zhi, F., Shao, N., Xue, L., Xu, Y., Kang, X., Yang, Y., and Xia, Y. (2017). Characteristic microRNA expression induced by delta-opioid receptor activation in the rat liver under prolonged hypoxia. Cell. Physiol. Biochem. 44, 2296-2309. https://doi.org/10.1159/000486067
  47. Zhou, L., Zang, G., Zhang, G., Wang, H., Zhang, X., Johnston, N., Min, W., Luke, P., Jevnikar, A., Haig, A., et al. (2013). MicroRNA and mRNA signatures in ischemia reperfusion injury in heart transplantation. PLoS One 8, e79805. https://doi.org/10.1371/journal.pone.0079805