Acknowledgement
본 논문은 교육부 및 한국연구재단의 4단계 두뇌한국21 사업(4단계 BK21 사업)으로 지원된 연구임.
References
- A. Dalkiran, A. S. Rifaioglu, M. J. Martin, R. Cetin-Atalay, V. Atalay, T. Dogan, "ECPred: A tool for the prediction of the enzymatic functions of protein sequences based on the EC nomenclature," BMC Bioinformatics, Vol.19, No.1, pp.334, 2018. https://doi.org/10.1186/s12859-018-2368-y
- A. Amidi, S. Amidi, D. Vlachakis, V. Megalooikonomou, N. Paragios, E. I. Zacharaki, "EnzyNet: Enzyme classification using 3D convolutional neural networks on spatial representation," PeerJ, Vol.6, pp.e4750, 2018. https://doi.org/10.7717/peerj.4750
- X. Xiao, L. Duan, G. Xue, G. Chen, P. Wang, W. R. Qiu, "MF-EFP: Predicting multi-functional enzymes function using improved hybrid multi-label classifier," IEEE Access, Vol.8, pp.50276-50284, 2020. https://doi.org/10.1109/access.2020.2979888
- N. Strodthoff, P. Wagner, M. Wenzel, and W. Samek, "UDSMProt: Universal deep sequence models for protein classification," Bioinformatics, Vol.36, Iss.8, pp.2401-2409, 2020. https://doi.org/10.1093/bioinformatics/btaa003
- R. Semwal, I. Aier, P. Tyagi, and P. K. Varadwaj, "DeEPn: A deep neural network based tool for enzyme functional annotation," Journal of Biomolecular Structure and Dynamics, Vol.39, No.8, pp.2733-2743, 2021. https://doi.org/10.1080/07391102.2020.1754292
- J. Y. Ryu, H. U. Kim, and S. Y. Lee, "Deep learning enables high-quality and high-throughput prediction of enzyme commission numbers," Proceedings of the National Academy of Sciences, Vol.116, No.28, pp.13996-14001, 2019. https://doi.org/10.1073/pnas.1821905116
- S. A. Memon, K. A. Khan, and H. Naveed, "HECNet: A hierarchical approach to enzyme function classification using a Siamese Triplet Network," Bioinformatics, Vol.36, No.17, pp.4583-4589, 2020. https://doi.org/10.1093/bioinformatics/btaa536
- C. Mirabello and B. Wallner, "rawMSA: End-to-end deep learning using raw multiple sequence alignments." PloS one, Vol.14, No.8, pp.e0220182, 2019. https://doi.org/10.1371/journal.pone.0220182
- Y. Guo, W. Li, B. Wang, H. Liu, and D. Zhou, "DeepACLSTM: Deep asymmetric convolutional long short-term memory neural models for protein secondary structure prediction," BMC Bioinformatics, Vol.20, No.1, pp.341, 2019. https://doi.org/10.1186/s12859-019-2940-0
- E. C. Alley, G Khimulya, S. Biswas, M. AlQuraishi, G. M. Church, "Unified rational protein engineering with sequence-based deep representation learning," Nature Methods, Vol.16, No.12, pp.1315-1322, 2019. https://doi.org/10.1038/s41592-019-0598-1
- Y. Jiang, D. Wang, and D. Xu, "DeepDom: Predicting protein domain boundary from sequence alone using stacked bidirectional LSTM," Pacific Symposium on Biocomputing: Pacific Symposium on Biocomputing, Vol.24, pp.66-75, 2019.
- S. Min, H. Kim, B. Lee, and S. Yoon, "Protein transfer learning improves identification of heat shock protein families," PloS one, Vol.16, No.5, pp.e0251865, 2021. https://doi.org/10.1371/journal.pone.0251865
- C. Claudel-Renard, C. Chevalet, T. Farau, and D. Kahn, "Enzyme-specific profiles for genome annotation: PRIAM," Nucleic Acids Research, Vol.31, No.22, pp.6633-6639, 2003. https://doi.org/10.1093/nar/gkg847
- R. d. O. Almeida and G. T. Valente, "Predicting metabolic pathways of plant enzymes without using sequence similarity: Models from machine learning," The Plant Genome, Vol.13, No.3, pp.e20043, 2020.
- N. Q. K. Le, E. K. Y. Yapp, and H. Yeh, "ET-GRU: Using multi-layer gated recurrent units to identify electron transport proteins," BMC Bioinformatics, Vol.20, No.1, pp.377, 2019. https://doi.org/10.1186/s12859-019-2972-5
- Z. Tao, B. Dong, Z. Teng, and Y. Zhao, "The classification of enzymes by deep learning," IEEE Access, Vol.8, pp.89802-89811, 2020. https://doi.org/10.1109/access.2020.2992468
- O. B. Sezer and A. M. Ozbayoglu, "Algorithmic financial trading with deep convolutional neural networks: Time series to image conversion approach," Applied Soft Computing, Vol.70, pp.525-538, 2018. https://doi.org/10.1016/j.asoc.2018.04.024
- K. Bhardwaj, "Convolutional Neural Network(CNN/ConvNet) in stock price movement prediction," arXiv:2106.01920, 2021.
- S. Hochreiter, "Untersuchungen zu dynamischen neuronalen Netzen," Diplom thesis, Institut f Informatik, Technische Univ, Munich. 1991.
- Y. Bengio, P. Simard, and P. Frasconi, "Learning long-term dependencies with gradient descent is diffcult," IEEE Transactions on Neural Networks, Vol.5, No.2, pp.157-166, 1994. https://doi.org/10.1109/72.279181
- K. Cho et al., "Learning phrase representations using RNN encoder-decoder for statistical machine translation," arXiv preprint arXiv:1406.1078, 2014.
- Y. Kim. "Convolutional Neural Networks for Sentence Classification". In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp.1746-1751, 2014.
- D. Masters and C. Luschi, "Revisiting small batch training for deep neural networks," Graphcore Research, arXiv: 1804.07612, 2018.