DOI QR코드

DOI QR Code

Examination of Aggregate Quality Using Image Processing Based on Deep-Learning

딥러닝 기반 영상처리를 이용한 골재 품질 검사

  • 김성규 (한국산업기술대학교 스마트팩토리융합학과) ;
  • 최우빈 (한국산업기술대학교 컴퓨터공학과) ;
  • 이종세 (주식회사 산하) ;
  • 이원곡 (한국공학대학교 인공지능기술사업화연구소) ;
  • 최근오 (스마트제조혁신추진단) ;
  • 배유석 (한국공학대학교 컴퓨터공학부)
  • Received : 2021.05.11
  • Accepted : 2021.11.24
  • Published : 2022.06.30

Abstract

The quality control of coarse aggregate among aggregates, which are the main ingredients of concrete, is currently carried out by SPC(Statistical Process Control) method through sampling. We construct a smart factory for manufacturing innovation by changing the quality control of coarse aggregates to inspect the coarse aggregates based on this image by acquired images through the camera instead of the current sieve analysis. First, obtained images were preprocessed, and HED(Hollistically-nested Edge Detection) which is the filter learned by deep learning segment each object. After analyzing each aggregate by image processing the segmentation result, fineness modulus and the aggregate shape rate are determined by analyzing result. The quality of aggregate obtained through the video was examined by calculate fineness modulus and aggregate shape rate and the accuracy of the algorithm was more than 90% accurate compared to that of aggregates through the sieve analysis. Furthermore, the aggregate shape rate could not be examined by conventional methods, but the content of this paper also allowed the measurement of the aggregate shape rate. For the aggregate shape rate, it was verified with the length of models, which showed a difference of ±4.5%. In the case of measuring the length of the aggregate, the algorithm result and actual length of the aggregate showed a ±6% difference. Analyzing the actual three-dimensional data in a two-dimensional video made a difference from the actual data, which requires further research.

콘크리트의 주재료인 골재 중 굵은 골재의 품질관리는 현재 샘플링을 통한 통계적 공정관리(SPC) 방법으로 하고 있다. 본 논문은 굵은 골재에 대한 품질관리를 현재의 체거름 방식을 대신 카메라를 통해 획득한 영상을 기반으로 굵은 골재를 검사하게 바꾸어 제조 혁신을 위한 스마트팩토리를 구축하였다. 먼저, 얻은 영상을 전처리 하였고, 딥러닝으로 학습된 HED(Holistically-nested Edge Detection)필터는 각각의 물체를 Segmentation하였다. 이 Segmentation한 결과를 영상 처리하여 각각의 골재를 분석 후 이 결과를 바탕으로 조립률, 입형률을 파악한다. 영상을 통해 얻은 골재들의 조립률, 입형률을 계산하여 골재의 품질을 검사하였고 알고리즘의 정확도는 실제로 체 가름 방식을 통해 골재의 품질을 비교한 것과 90% 이상의 정확도를 보이는 결과가 나왔다. 또한 기존의 방법으로는 골재의 입형률을 검사할 수 없었지만 본문의 내용을 통해 골재의 입형률도 측정할 수 있게 되었다. 입형률의 경우 도형을 사용하여 검증하였는데 이는 ±4.5%의 차이를 보였다. 골재의 길이 측정의 경우 실제 골재의 길이를 비교하였는데 ±6%의 차이를 보였다. 실제 3차원의 데이터를 2차원의 영상에서 분석하다보니 실제 데이터와 차이가 생겼는데 이는 추후 연구가 필요하다.

Keywords

Acknowledgement

이 논문은 2021년도 정부(산업통상자원부)의 재원으로 한국산업기술진흥원의 지원을 받아 수행된 연구임(N0002429, 산업혁신인재성장지원사업).

References

  1. K. Yu and W. Cho, "Analysis of size distribution of riverbedgravel through digital image processing", Journal of Korea Water Resources Association, Vol.52, No.7, pp.493-503, 2019. https://doi.org/10.3741/JKWRA.2019.52.7.493
  2. Y. Kuroda, S. Fukuoka, T. Yamamoto, K. Yoshida, and T. Iuchi, "Formation mechanism of gravel bed rivers and its characteristics of grain size distribution," Advances in River Engineering, Vol.11, pp.363-368, 2005. (in Japanese)
  3. M. Uchio, H. Nakagawa, T. Sawada, K. Yokoyama, M. Uesugi, and Y. Fukuda, "Development of a measuring system for particle size distribution in gravel-bed rivers by using an image processing technique," Journal of the Japan Society of Erosion Control Engineering, Vol.58, No.2, pp.26-31, 2005. (in Japanese)
  4. K. Ohashi, S. Yasuda, and I. Ihara, "Investigation of riverbed material using image processing," Proceeding of Annual Symposium 2010 of Japan Society of Erosion Control Engineering, pp.286-287, 2010. (in Japanese)
  5. Y. R. Kim, J. H. Lee, and J. H. Park, "The quality status of aggregate for domestic ready-mixed concrete and the effect of aggregate quality in concrete", Journal of the Korea Institute of Building Construction, Vol.14, No.1, pp.11-20, 2014. https://doi.org/10.5345/JKIBC.2014.14.1.011
  6. Integrated National Standard Certification Information System [Internet], https://standard.go.kr/KSCI/portalindex.do
  7. B. S. Cho, C. G. Han, and M. H. Kim, "An experimental study on the effect of aggregate shape influencing to the concrete properties", Architectural Institute of Korea, Collection of Papers for Academic Presentations, Vol.8, No.2, pp.735-738, 1988.
  8. S. Xie and Z. Tu, "Holistically-nested edge detection", Proceedings of the IEEE International Conference on Computer Vision, pp.1395-1403, 2015.
  9. K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image recognition", ArXiv Preprint ArXiv, 2014.
  10. N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. "Indoor segmentation and support inference from rgbd images", (ECCV)European Conference on Computer Vision, Springer, Berlin, Heidelberg, pp.746-760, 2012.
  11. J. Canny, "A computational approach to edge detection," IEEE Transactions on Pattern Analysis and Machine Intelligence, Issue 6, pp.679-698, 1986.
  12. J. M. Prewitt, "Object enhancement and extraction," Picture processing and Psychopictorics, pp.15-19, 1970.
  13. J. Kittler, "On the accuracy of the sobel edge detector," Image and Vision Computing, Vol.1, No.1, pp.37-42, 1983. https://doi.org/10.1016/0262-8856(83)90006-9
  14. OpenCV Homepage [Internet], https://docs.opencv.org/3.4/dd/d49/tutorial_py_contour_features.html
  15. O. Ronneberger, P. Fischer, and T. Brox, "U-net: Convolutional networks for biomedical image segmentation," International Conference on Medical Image Computing and Computer-assisted Interventio, Springer, Cham, pp.234-241, 2015.