DOI QR코드

DOI QR Code

Recent Progress in Dielectric-Based Ultrafast Charging/Discharging Devices

유전체를 활용한 초고속 에너지 충/방전 소자 기술

  • Choi, Hyunsu (Department of Materials Science and Engineering, Pukyong National University) ;
  • Ryu, Jungho (School of Materials Science & Engineering, Yeungnam University) ;
  • Yoon, Woon-Ha (Department of Functional Ceramics, Korea Institute of Materials Science (KIMS)) ;
  • Hwang, Geon-Tae (Department of Materials Science and Engineering, Pukyong National University)
  • 최현수 (부경대학교 재료공학과) ;
  • 류정호 (영남대학교 신소재공학부) ;
  • 윤운하 (한국재료연구원 기능세라믹연구실) ;
  • 황건태 (부경대학교 재료공학과)
  • Received : 2022.05.04
  • Accepted : 2022.05.09
  • Published : 2022.07.01

Abstract

Energy storage capacitors based on dielectric ceramics with superior polarization properties and dielectric constant can provide much higher output power density due to their very fast energy charging/discharging rates, which are particularly suitable for operating pulsed-power devices. For an outstanding energy storage performance of dielectric capacitor, a large recoverable energy density could be derived by introducing a slim polarization-electric field hysteresis loop into dielectric materials by various technical approaches. Many research teams have explored various dielectric capacitor technologies to demonstrate high output power density and ultrafast charging/discharging behavior. This article reviews the recent research progress in high-performance dielectric capacitors for pulsed-power electronic applications.

Keywords

References

  1. T. R. Jow, F. W. MacDougall, J. B. Ennis, X. H. Yang, M. A. Schneider, C. J. Scozzie, J. D. White, J. R. MacDonald, M. C. Schalnat, R. A. Cooper, and S.P.S. Yen, Proc. 2015 IEEE Pulsed Power Conference (PPC) (IEEE, Austin, USA, 2015) p. 1-7. [DOI: https://doi.org/10.1109/PPC.2015.7297027]
  2. F. Han, G. Meng, F. Zhou, L. Song, X. Li, X. Hu, X. Zhu, B. Wu, and B. Wei, Sci. Adv., 1, 1500605 (2015). [DOI: https://doi.org/10.1126/sciadv.1500605]
  3. Prateek, V. K. Thakur, and R. K. Gupta, Chem. Rev., 116, 4260 (2016). [DOI: https://doi.org/10.1021/acs.chemrev.5b00495]
  4. Z. Yao, Z. Song, H. Hao, Z. Yu, M. Cao, S. Zhang, M. T. Lanagan, and H. Liu, Adv. Mater., 29, 1601727 (2017). [DOI: https://doi.org/10.1002/adma.201601727]
  5. K. Yao, S. Chen, M. Rahimabady, M. S. Mirshekarloo, S. Yu, F.E.H. Tay, T. Sritharan, and L. Lu, IEEE Trans. Ultrason. Eng., 58, 1968 (2011). [DOI: https://doi.org/10.1109/TUFFC.2011.2039]
  6. A. Chauhan, S. Patel, R. Vaish, and C. R. Bowen, Materials, 8, 8009 (2015). [DOI: https://doi.org/10.3390/ma8125439]
  7. P. Barber, S. Balasubramanian, Y. Anguchamy, S. Gong, A. Wibowo, H. Gao, H. J. Ploehn, and H. C. Zur Loye, Materials, 2, 1697 (2009). [DOI: https://doi.org/10.3390/ma2041697]
  8. B. Peng, Q. Zhang, X. Li, T. Sun, H. Fan, S. Ke, M. Ye, Y. Wang, W. Lu, H. Niu, J. F. Scott, X. Zeng, and H. Huang, Adv. Electron. Mater., 1, 1500052 (2015). [DOI: https://doi.org/10.1002/aelm.201500052]
  9. B. Chu, X. Zhou, K. Ren, B. Neese, M. Lin, Q. Wang, F. Bauer, and Q. M. Zhang, Science, 313, 334 (2006). [DOI: https://doi.org/10.1126/science.1127798]
  10. F. Guan, Z. Yuan, E. W. Shu, and L. Zhu, Appl. Phys. Lett., 94, 052907 (2009). [DOI: https://doi.org/10.1063/1.3079332]
  11. T. D. Huan, S. Boggs, G. Teyssedre, C. Laurent, M. Cakmak, S. Kumar, and R. Ramprasad, Prog. Mater. Sci., 83, 236 (2016). [DOI: https://doi.org/10.1016/j.pmatsci.2016.05.001]
  12. K. Uchino, J. H. Zheng, Y. H. Chen, X. H. Du, J. Ryu, Y. Gao, S. Ural, S. Priya, and S. Hirose, J. Mater. Sci., 41, 217 (2006). [DOI: https://doi.org/10.1007/s10853-005-7201-0]
  13. C. K. Park, S. H. Lee, J. H. Lim, J. Ryu, D. H. Choi, and D. Y. Jeong, Ceram. Int., 44, 20111 (2018). [DOI: https://doi.org/10.1016/j.ceramint.2018.07.303]
  14. M. Peddigari, H. Palneedi, G. T. Hwang, K. W. Lim, G. Y. Kim, D. Y. Jeong, and J. Ryu, ACS Appl. Mater. Interfaces, 10, 20720 (2018). [DOI: https://doi.org/10.1021/acsami.8b05347]
  15. M. Peddigari, J. H. Park, J. H. Han, C. K. Jeong, J. Jang, Y. Min, J. W. Kim, C. W. Ahn, J. J. Choi, B. D. Hahn, S. Y. Park, W. H. Yoon, D. S. Park, D. Y. Jeong, J. Ryu, K. J. Lee, and G. T. Hwang, ACS Energy Lett., 6, 1383 (2021). [DOI: https://doi.org/10.1021/acsenergylett.1c00170]
  16. C. Neusel, H. Jelitto, D. Schmidt, R. Janssen, F. Felten, and G. A. Schneider, J. Eur. Ceram. Soc., 35, 113 (2015). [DOI: https://doi.org/10.1016/j.jeurceramsoc.2014.08.028]
  17. J. Li, F. Li, Z. Xu, and S. Zhang, Adv. Mater., 30, 1802155 (2018). [DOI: https://doi.org/10.1002/adma.201802155]
  18. G. Wang, Z. Lu, Y. Li, L. Li, H. Ji, A. Feteira, D. Zhou, D. Wang, S. Zhang, and L. M. Reaney, Chem. Rev., 121, 6124 (2021). [DOI: https://doi.org/10.1021/acs.chemrev.0c01264]
  19. J.P.B. Silva, J.M.B. Silva, M.J.S. Oliveira, T. Weingartner, K. C. Sekhar, M. Pereira, and M.J.M. Gomes, Adv. Funct. Mater., 29, 1807196 (2018). [DOI: https://doi.org/10.1002/adfm.201807196]
  20. A. B. Amar, A. B. Kouki, and H. Cao, Sensors, 15, 28889 (2015). [DOI: https://doi.org/10.3390/s151128889]