DOI QR코드

DOI QR Code

Physiological Responses of Common Carp (Cyprinus Capio) and Crucian Carp (Carassius Auratus) by Rapid Changes of Water Temperature

급격한 수온변화에 따른 잉어 (Cyprinus capio)와 붕어 (Carassius auratus)의 생리적 반응

  • Moon, Jeong Suk (Water Environment Research Department, National Institute of Environmental Research) ;
  • Hur, Jun Wook (Department of Aquaculture and Aquatic Science, Kunsan National University)
  • 문정숙 (국립환경과학원 물환경연구부) ;
  • 허준욱 (군산대학교 해양생명과학과)
  • Received : 2022.06.16
  • Accepted : 2022.06.20
  • Published : 2022.06.30

Abstract

The blood and physiological changes of common carp (Cyprinus carpio) and crucian carp (Carassius auratus) were analyzed when the water temperature was rapidly increased from 20℃ (control) to 26 and 32℃. The water temperature reached 26℃ and 32℃ within 6 hours from the water temperature of 20℃, and the control was maintained at 20℃ for the duration of the experiment. From each experimental group, blood was collected every 3, 12, 24 and 48 hours after the water temperature rise, and the red blood cell count, hemoglobin, hematocrit, Na+, K+, Cl-, cortisol, glucose, aspartate amino transferase (AST) and alanine amino transferase (ALT) contents were analyzed. In the case of the crucian carp experimental group where the water temperature was raised to 32℃, the concentrations of plasma cortisol, glucose, AST and ALT increased 3 hours after the water temperature rise, and the concentrations did not decrease until 48 hours (P<0.05). Plasma cortisol, glucose, AST, and ALT in both C. carpio and C. auratus in the control group and the experimental group raised to 26℃ increased at 3 hours after the water temperature rise (P<0.05), and decreased to the value before the water temperature rise at 48 hours (P<0.05). The plasma Na+, K+ and Cl- concentrations of C. carpio and C. auratus in the experimental group where the water temperature was raised to 32℃ were higher than in the 20 and 26℃ experimental groups. The blood reaction of all experimental groups including the control group showed a common trend in both C. carpio and C. auratus increasing up to 12 hours after the water temperature rise and then decreasing at 48 hours after the water temperature rise. The results derived from this study would be useful for investigating the physiological response of fish stress in future. In addition, as fish mortality has recently occurred frequently in rivers and lakes, it is judged that it can be used as basic data.

잉어 (Cyprinus carpio)와 붕어 (Carassius auratus)를 대상으로 수온 20℃ (대조구)에서 26 및 32℃로 급격하게 증가하였을 때의 혈액 및 생리학적 변화를 분석하였다. 수온 20℃로부터 6시간 이내에 26℃ 및 32℃에 각각 도달하였으며, 대조구는 실험기간동안 20℃로 유지하였다. 각 실험구에서 수온상승 후 3, 12, 24 및 48시간마다 혈액을 채취하여 적혈구수, 헤모글로빈, 헤마토크리트, Na+, K+, Cl-, 코티졸, 글루코스, AST 및 ALT 함량을 분석하였다. 수온 32℃로 상승한 붕어 실험구의 경우, 수온상승 후 3시간에 코티졸, 글루코스, aspartate aminootransferase (AST) 및 alanine aminotransferase (ALT) 농도가 증가하였으며, 48시간까지 농도가 감소하지 않았다 (P<0.05). 잉어의 코티졸, 글루코스, AST 및 ALT 농도는 수온상승 후 3시간째에 유의하게 높아졌다가 (P<0.05), 수온상승 후 48시간째에 수온상승 이전 (20℃)의 값으로 감소하였다 (P>0.05). 대조구와 26℃로 상승한 실험구는 잉어와 붕어 모두에서 코티졸, 글루코스, AST 및 ALT는 수온 상승 후 3시간째 증가하였으며 (P<0.05), 48시간째에 수온상승전의 값으로 낮아졌다 (P<0.05). 수온 32℃로 상승한 실험구의 잉어와 붕어의 Na+, K+ 및 Cl- 농도는 20 및 26℃ 실험군에 비해 높게 나타났다. 대조구를 포함한 모든 실험구의 혈액성상 반응은 잉어와 붕어 모두에서 수온상승 후 12시간까지 증가하다가 수온상승 후 48시간째에 감소하는 경향이 공통적으로 나타났다. 본 연구로 도출된 결과를 이용하여 어류가 스트레스에 노출시 생리학적 반응을 명확하게 구명할 수 있는 방안으로 활용 가능할 것이다. 또한 최근 하천 및 호소에서 어류 폐사가 빈번하게 발생되고 있어서 이에 대한 기초자료로 활용할 수 있을 것으로 판단된다.

Keywords

Acknowledgement

본 연구는 국립환경과학원 재원의 지류지천 어류폐사 원인 연구 (NIER-RP2018-228)의 일환으로 작성되었습니다.

References

  1. Akbary, P., Yarahmadi, S.S., and Jahanbakhshi, A. 2018. Hematological, haparic enzyme;s activity and oxidative stress responses of gray mullet (Mugil cephalus) after sub-acute exposure to copper oxide. Environmental Science and Pollution Research 25: 1800-1808. https://doi.org/10.1007/s11356-017-0582-1
  2. Amin, S.A.H. and Khan, K.M.H. 2016. Effect of different levels of water temperature on blood parameters of common carp (Cyprinus carpio). Research Op inions in Animal and Veterinary Sciences 6: 178-180.
  3. Balta, Z.D., Akhan, S., and Balta F. 2017. The physiological stress response to acute thermal exposure in black sea trout (Salmo trutta). Turkish Journal of Veterinary and Animal Sciences 41: 400-406. https://doi.org/10.3906/vet-1606-32
  4. Barton, B.A. and Iwama, G.K. 1991. Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids. Annual Review of Fish Diseases 1: 3-26. https://doi.org/10.1016/0959-8030(91)90019-g
  5. Bhikajee, M. and Gobin, P. 1998. Effect of temperature on the feeding rate and growth of a red tilapia hybrid. Proceed 4th Int Symp Tilapia Aquacult 1: 131-140.
  6. Byun, M.S., Jang, M.H., and Song, H.B. 2011. Mass p erish of freshwater fish - Analysis of case and cause. National Institute of Environmental Research pp. 103. (in Korean)
  7. Cho, H.C., Kim, J.E., Kim, H.B., and Baek, H.J. 2015. Effects of water temperature change on the hematological responses and plasma cortisol levels in growing of red spotted grouper, Epinephelus akaara. Development and Reproduction 19: 19-24. (in Korean) https://doi.org/10.12717/DR.2015.19.1.019
  8. Davis, K.B. 2004. Temperature affects physiological stress responses to acute confinement in sunshine bass (Morone chrysops×Morone saxatilis). Comparative Biochemistry and Physiology Part A 139: 433-440. https://doi.org/10.1016/j.cbpb.2004.09.012
  9. Dutta, H. 1994. Growth in fishes. Gerontology 40: 97-112. https://doi.org/10.1159/000213581
  10. Elliott, J.M. 1982. The effects of temperature and ration size on the growth and energetics of salmonids in captivity. Comparative Biochemistry and Physiology Part B 73: 81-91. https://doi.org/10.1016/0305-0491(82)90202-4
  11. Hur, J.W. 2002. Physiological responses of fishes to the artificial stresses in the process of aquaculture. Thesis for the degree of doctor of philosophy, Pukyung National Univ, pp. 196. (in Korean)
  12. Hur, J.W. 2018. Stress responses of olive flounder, Paralichthys olivaceus by sudden rise of temperature in low and high water temperature condition. International Journal of New Innovations in Engineering and Technology 9: 74-86.
  13. Hur, J.W., Kang, K.H., and Kang, Y.J. 2019. Effects of acute air exposure on the hematological characteristics and physiological stress resonse of olive flounder (Paralichthys olivaceus) and Japanese croaker (Nibea japonica). Aquaculture 502: 142-147. https://doi.org/10.1016/j.aquaculture.2018.12.038
  14. Hur, J.W., Lim, H.K., and Chang, Y.J. 2008. Effects of repetitive temperature changes on the stress response and growth of olive flounder, Paralichthys olivaceus. Journal of Applied Animal Research 33: 49-54. https://doi.org/10.1080/09712119.2008.9706895
  15. Jaxion-Harm, J. and Ladich, F. 2014. Effects of temperature change on cortisol release by common carp, Cyprinus carpio. Journal of Fish Biology 84: 1221-1227. https://doi.org/10.1111/jfb.12331
  16. Kibria, G. 2014. Global fish kills: Causes and consequences. Technical Rep, Research Gate, pp. 1-5 (Online Press).
  17. Kim, I.B. 1974. Freshwater fishes of Korea. TaeHwa Inc., Korea, pp. 188. (in Korean)
  18. Lankford, S., Adams, T.E., and Cech, J.J. 2003. Time of day and water temperature modify the physiological stress response in green sturgeon, Acipenser medirostris. Comparative Biochemistry and Physiology Part A 135: 291-302. https://doi.org/10.1016/S1095-6433(03)00075-8
  19. Lee, E.H., Chung, B.G., Kim, J.S., Ahn, C.B., and Oh, K.S. 1989. Studies on the food components of triploid carp muscle. Bulletin Korean Fisheries Society 22: 154-160. (in Korean with English abstract)
  20. Lee, J.A., Lee, J.S., Kim, J.H., Myoung, J.G. Oh, S.Y., and Kang, R.S. 2014. Relationship between water temperature and oxygen consumption rate of the black scraper, Thamnaconus modestus. Ocean and Polar Research 36: 39-47. (in Korean) https://doi.org/10.4217/OPR.2014.36.1.039
  21. Li, D., Xie, P., and Zhang, X. 2008. Changes in plasma thyroid hormones and cortisol levels in crucian carp (Carassius auratus) exposed to the extracted microcystin. Chemosphere 74: 13-18. https://doi.org/10.1016/j.chemosphere.2008.09.065
  22. Liew, H.J., Sinha, A.K., Mauro, N., Diricx, M., Darras, V.M., Blust, R., and Boeck, G.D. 2013. Feeding and swimming modulate iono-and-hormonal regulation differently in goldfish, Carassius auratus and common carp , Cyprinus carpio. Comparative Biochemistry and Physiology Part A 165: 13-21. https://doi.org/10.1016/j.cbpa.2013.02.009
  23. Lim, H.K. and Hur, J.W., 2018. Effects of acute and chronic air exposure on growth and stress response of juvenile olive flounder, Paralichthys olivaceus. Turkish Journal of Fisheries and Aquatic Sciences 18: 143-151. https://doi.org/10.4194/1303-2712-v18_1_16
  24. Park, M.R., Chang, Y.J., and Kang, D.Y. 1999. Physiological response of the cultured olive flounder (Paralichthys olivaceus) to the sharp changes of water temperature. Journal of Aquaculture 12: 221-228. (in Korean with English abstract)
  25. Penghan, L.Y., Cao, Z.D., and Fu, S.J. 2014. Effect of temperature and dissolved oxygen on swimming performance in crucian carp. Aquatic Biology 21: 57-65. https://doi.org/10.3354/ab00571
  26. Rapp, T., Hallermann, J., Cooke, S.J., Hetz, S.K., Wuertz, S., and Arlinghaus, R. 2012. Physiological and behavioural consequences of capture and retention in carp sacks on common carp (Cyprinus carpio), with imp lications for catch and release recreational fishing. Fisher Research 125-126: 57-68. https://doi.org/10.1016/j.fishres.2012.01.025
  27. Shin, Y.K., Kim, Y.D., and Kim, W.J. 2018. Survival and physiological responses of red sea bream Pagrus major with decreasing sea water temperature. Korean Journal of Ichthyolology 30: 131-136. (in Korean with English abstract). https://doi.org/10.35399/ISK.30.3.1
  28. Sula, E. and Aliko, V. 2017. Effects of stressors on hematological and immunological response in the fresh water crucian carp fish, Carassius carassius. Albanian Journal of Agricultural Sciences, 583-590.
  29. Takahara, T., Yamanaka, H., Suzuki, A., and Honjo, M. 2011. Stress response to daily temperature fluctuation in common carp, Cyprinus capio. Hydrobiologia 675: 65-73. https://doi.org/10.1007/s10750-011-0796-z
  30. Wei, H., Li, H.D., Xia, Y., Liu, H.K., Han, D., Zhu, X.M., Yang, Y.X., Jin, J.Y., and Xie, S.Q. 2019. Effects of light intensity on phototaxis, growth, antioxidant and stress of juvenile gibel carp (Carassius auratus gibelio). Aquaculture 501: 39-47. https://doi.org/10.1016/j.aquaculture.2018.10.055
  31. Yeon, I.J., Choi, S.K., Lee, B.C., Park, J.H., and Choi, H.I. 2011. Effects of juvenile common carp (Cyprinus carpio) and bagrid catfish (Pseudobagrus fulvidraco) for artificial stresses. In: Annual Spring Conference of Korean Soc Noise Vibrat Engineer, JungSeon, Korea, 27(29): 814-816. (in Korean)