DOI QR코드

DOI QR Code

Spatial Point Pattern Analysis of Riparian Tree Distribution After the 2020 Summer Extreme Flood in the Seomjin River

2020년 여름 섬진강 대홍수 이후 하천 수목 분포에 대한 공간 점 패턴 분석

  • Lee, Keonhak (The Institute for Korean Regional Studies, Seoul National University) ;
  • Cho, Eunsuk (Department of Planning and Landscape Architecture, Dong-A University) ;
  • Cho, Jonghun (Department of Planning and Landscape Architecture, Dong-A University) ;
  • Lee, Cheolho (Department of Biological Sciences and Bioengineering, Inha University) ;
  • Kim, Hwirae (Department of Environmental Engineering, Soosungengineering) ;
  • Baek, Donghae (Korea Rural Community Corporation, Rural Research Institute) ;
  • Kim, Won (Department of Land, Water and Environment Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Cho, Kang-Hyun (Department of Biological Sciences, Inha University) ;
  • Kim, Daehyun (Department of Geography, Seoul National University)
  • 이건학 (서울대학교 국토문제연구소) ;
  • 조은숙 (동아대학교 도시계획.조경학과) ;
  • 조종훈 (동아대학교 도시계획.조경학과) ;
  • 이철호 (인하대학교 바이오시스템융합학과) ;
  • 김휘래 ((주)수성엔지니어링 환경사업부) ;
  • 백동해 (한국농어촌공사 농어촌연구원) ;
  • 김원 (한국건설기술연구원 수자원하천연구본부) ;
  • 조강현 (인하대학교 생명과학과) ;
  • 김대현 (서울대학교 지리학과)
  • Received : 2022.03.16
  • Accepted : 2022.04.28
  • Published : 2022.06.30

Abstract

The 2020 summer extreme flood severely disturbed the riparian ecosystem of the Seomjin River. Some trees were killed by the flood impact, whereas others have recovered through epicormic regeneration after the disturbance. At the same time, several tree individuals newly germinated. This research aimed to explain the recovery of the riparian ecosystem by spatial proximity between each tree individual of different characteristics, such as "dead", "recovered", and "newly germinated". A spatial point pattern analysis based on K and g-functions revealed that the newly germinated trees and the existing trees were distributed in the spatially clumping patterns. However, further detailed analysis revealed that the new trees were statistically less attracted to the recovered trees than the dead trees, implying competitive interactions hidden in the facilitative interactions. Habitat amelioration by the existing trees positively affected the growth of the new trees, while "living" existing trees were competing with the new trees for resources. This research is expected to provide new knowledge in this era of rapid climate change, which likely induces stronger and more frequent natural disturbance than before. Environmental factors have been widely used for ecosystem modeling, but species interactions, represented by the relative spatial distribution of plant individuals, are also valuable factors explaining ecosystem dynamics.

2020년 여름, 한반도 남부를 강타한 대홍수는 섬진강 하천 생태계를 크게 교란시켰다. 홍수의 피해를 입은 하천 수목 중 일부는 고사하였고, 또 다른 일부는 시간이 지남에 따라 어느 정도 회복되는 모습을 보였다. 더불어 홍수 후 새로 자라난 수목도 관찰되었다. 본 연구에서는 교란된 하천 생태계가 회복하는 과정을 서로 다른 특성의 수목 간 공간적 인접성을 통해 설명하였다. 공간 점 패턴 분석 (spatial point pattern analysis) 결과, 새로 발생한 수목과 홍수 이전부터 존재하였던 수목은 서로 공간적으로 군집하는 것으로 나타났다. 하지만 보다 세밀한 분석을 통해 새로 발생한 수목은 기존 수목 중 회복한 수목보다 회복되지 않은 수목과 더 강하게 군집한다는 사실이 밝혀졌으며, 이를 통해 촉진적 (facilitative) 상호작용 속에 가려진 경쟁적 (competitive) 상호작용을 포착할 수 있었다. 기존 수목에 의한 서식처 개선 효과는 새로 발생한 수목의 생장에 긍정적인 역할을 했을 것이나, "살아 있는" 기존 수목은 새로 발생한 수목과 한정된 자원을 두고 경쟁했을 것으로 예상된다. 이러한 결과는 전지구적인 기후변화의 맥락 속에서 국내 하천 생태계가 마주할 강하고 빈번한 자연적 교란에 대비할 새로운 지식을 제공할 수 있다. 전통적으로 학계에서는 환경 요인을 설명 변수로 하는 생태 모델링이 널리 사용되고 있지만, 수목 개체들 간 상대적 위치 관계로 대표될 수 있는 개체 간 상호작용 역시 생태계 변화를 설명하는 데 있어서 중요한 요인이라고 할 수 있다.

Keywords

Acknowledgement

본 연구는 응용생태공학회 하천생물지형분과위원회 활동의 하나로서 수행되었습니다. 더불어 한국연구재단 (과제번호: 2021R1I1A204766111), 서울대학교 '인문·사회계열 학문전공교원 해외연수 지원 사업', 그리고 서울대학교 '2021 미래기초학문분야 기반조성사업'의 지원을 받았습니다.

References

  1. Allen, C.D., Breshears, D.D., and McDowell, N.G. 2015. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6(8): 1-55.
  2. Armstrong, W., Brandle, R., and Jackson, M.B. 1994. Mechanisms of flood tolerance in plants. Acta Botanica Neerlandica 43(4): 307-358. https://doi.org/10.1111/j.1438-8677.1994.tb00756.x
  3. Baddeley, A., Rubak, E., and Turner, R. 2015. Spatial point patterns: methodology and applications with R. CRC press, Florida, USA.
  4. Bendix, J. 1999. Stream power influence on southern Californian riparian vegetation. Journal of Vegetation Science 10(2): 243-252. https://doi.org/10.2307/3237145
  5. Ben-Said, M. 2021. Spatial point-pattern analysis as a powerful tool in identifying pattern-process relationships in plant ecology: an updated review. Ecological Processes 10(1): 1-23. https://doi.org/10.1186/s13717-021-00314-4
  6. Blom, C.W.P.M., Bogemann, G.M., Laan, P., Van der Sman, A.J.M., Van de Steeg, H.M., and Voesenek, L.A.C.J. 1990. Adaptations to flooding in plants from river areas. Aquatic Botany 38(1): 29-47. https://doi.org/10.1016/0304-3770(90)90097-5
  7. Bornette, G. and Amoros, C. 1996. Disturbance regimes and vegetation dynamics: role of floods in riverine wetlands. Journal of vegetation Science 7(5): 615-622. https://doi.org/10.2307/3236373
  8. Corenblit, D., Baas, A., Balke, T., Bouma, T., Fromard, F., Garofano-Gomez, V., Gonzalez, E., Gurnell, A.M., Hortobagyi, B., Julien, F., Kim, D., Lambs, L., Stallins, J.A., Steiger, J., Tabacchi, E., and Walcker, R. 2015b. Engineer pioneer plants respond to and affect geomorphic constraints similarly along water-terrestrial interfaces world-wide. Global Ecology and Biogeography 24(12): 1363-1376. https://doi.org/10.1111/geb.12373
  9. Corenblit, D., Davies, N.S., Steiger, J., Gibling, M.R., and Bornette, G. 2015a. Considering river structure and stability in the light of evolution: feedbacks between riparian vegetation and hydrogeomorphology. Earth Surface Processes and Landforms 40(2): 189-207. https://doi.org/10.1002/esp.3643
  10. Dzubakova, K., Molnar, P., Schindler, K., and Trizna, M. 2015. Monitoring of riparian vegetation response to flood disturbances using terrestrial photography. Hydrology and Earth System Sciences 19(1): 195-208. https://doi.org/10.5194/hess-19-195-2015
  11. Eaton, B.C. and Lapointe, M.F. 2001. Effects of large floods on sediment transport and reach morphology in the cobble-bed Sainte Marguerite River. Geomorphology 40(3-4): 291-309. https://doi.org/10.1016/S0169-555X(01)00056-3
  12. Galindo, V., Calle, Z., Chara, J., and Armbrecht, I. 2017. Facilitation by pioneer shrubs for the ecological restoration of riparian forests in the Central Andes of Colombia. Restoration Ecology 25(5): 731-737. https://doi.org/10.1111/rec.12490
  13. Gonzalez, E., Sher, A.A., Tabacchi, E., Masip, A., and Poulin, M. 2015. Restoration of riparian vegetation: a global review of implementation and evaluation approaches in the international, peer-reviewed literature. Journal of Environmental Management 158: 85-94. https://doi.org/10.1016/j.jenvman.2015.04.033
  14. Gurnell, A. 2014. Plants as river system engineers. Earth Surface Processes and Landforms 39(1): 4-25. https://doi.org/10.1002/esp.3397
  15. Gurnell, A.M., Petts, G.E., Hannah, D.M., Smith, B.P., Edwards, P.J., Kollmann, J., Ward, J.V., and Tockner, K. 2001. Riparian vegetation and island formation along the gravel-bed Fiume Tagliamento, Italy. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group 26(1): 31-62. https://doi.org/10.1002/1096-9837(200101)26:1<31::AID-ESP155>3.0.CO;2-Y
  16. Han, W.S., Sim, O.B., Lee, B.J., and Yoo, J.H. 2012. The proposal of evaluation method for local government infrastructure vulnerability relating to climate change driven flood. Journal of Climate Change Research 3(1): 25-37. (in Korean)
  17. Hannah, L., Midgley, G.F., and Millar, D. 2002. Climate change-integrated conservation strategies. Global Ecology and Biogeography 11(6): 485-495. https://doi.org/10.1046/j.1466-822X.2002.00306.x
  18. HRFCO (Han River Flood Control Office). 2021. Annual Hydrological Report on Korea. http://hrfco.go.kr/web/sumun/floodgate.do. Accessed7 February 2022. (in Korean)
  19. Kang, J.E. and Lee, M.J. 2012. Assessment of flood vulnerability to climate change using fuzzy model and GIS in Seoul. Journal of the Korean Association of Geographic Information Studies 15(3): 119-136. (in Korean) https://doi.org/10.11108/KAGIS.2012.15.3.119
  20. Kang, T., Kimura, I., and Shimizu, Y. 2020. Numerical simulation of large wood deposition patterns and responses of bed morphology in a braided river using large wood dynamics model. Earth Surface Processes and Landforms 45(4): 962-977. https://doi.org/10.1002/esp.4789
  21. Kauffman, J.B., Beschta, R.L., Otting, N., and Lytjen, D. 1997. An ecological perspective of riparian and stream restoration in the western United States. Fisheries 22(5): 12-24. https://doi.org/10.1577/1548-8446(1997)022<0012:AEPORA>2.0.CO;2
  22. Kim, D. 2021. An overview and outlook of biogeomorphic research trend in the Korean geographical society. Journal of the Korean Geographical Society 56(1): 95-112. (in Korean) https://doi.org/10.22776/KGS.2021.56.1.95
  23. Kim, D., Kim, W., Kim, E., Ock, G., Jang, C.-L., Choi, M., and Cho, K.-H. 2020b. Applications and perspectives of fluvial biogeomorphology in the stream management of South Korea. Ecology and Resilient Infrastructure 7(1): 1-14. (in Korean) https://doi.org/10.17820/eri.2020.7.1.001
  24. Kim, D., Millington, A.C., and Lafon, C.W. 2020a. Disturbance after disturbance: Combined effects of two successive hurricanes on forest community structure. Annals of the American Association of Geographers 110(3): 571-585. https://doi.org/10.1080/24694452.2019.1654844
  25. Kim, W. and Kim, S. 2020. Riparian Vegetation Expansion Due to the Change of Rainfall Pattern and Water Level in the River. Ecology and Resilient Infrastructure 7(4): 238-247. (in Korean) https://doi.org/10.17820/ERI.2020.7.4.238
  26. Lee, C., Lee, K., Kim, H., Baek, D., Kim, W., Kim, D., Lee, H., Woo, H., and Cho, K.H. 2021. The Interrelationship between Riparian Vegetation and Hydraulic Characteristics during the 2020 Summer Extreme Flood in the Seomjin-gang River, South Korea. Ecology and Resilient Infrastructure 8(2): 79-87. (in Korean) https://doi.org/10.17820/ERI.2021.8.2.079
  27. Lee, C., Lee, K., Kim, H., Baek, D., Kim, W., Woo, H., Cho, K.-H., and Kim, D. In press. Impacts of an extreme flood event on the riparian vegetation of a monsoonal cobble-bed stream in southern Korea: A multiscale fluvial biogeomorphic framework. River Research and Applications.
  28. Lee, D.R., Kim, U.T., and Yoo, C. 2004. Climate change impacts on meteorological drought and flood. Journal of Korea Water Resources Association 37(4): 315-328. (in Korean) https://doi.org/10.3741/JKWRA.2004.37.4.315
  29. Makaske, B., Maas, G.J., Van den Brink, C., and Wolfert, H.P. 2011. The influence of floodplain vegetation succession on hydraulic roughness: is ecosystem rehabilitation in Dutch embanked floodplains compatible with flood safety standards? Ambio 40(4): 370-376. https://doi.org/10.1007/s13280-010-0120-6
  30. Meehl, G.A. and Tebaldi, C. 2004. More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305(5686): 994-997. https://doi.org/10.1126/science.1098704
  31. Meyer, J.L., Sale, M.J., Mulholland, P.J., and Poff, N.L. 1999. Impacts of climate change on aquatic ecosystem functioning and health. Journal of the American Water Resources Association 35(6): 1373-1386. https://doi.org/10.1111/j.1752-1688.1999.tb04222.x
  32. MOE (Ministry of Environment). 2022. Water Resources Management Information System. http://www.wamis.go.kr. Accessed 7 February 2022. (in Korean)
  33. MOLIT (Ministry of Land, Infrastructure and Transport). 2021. River Management Geographic Information System. http://www.river.go.kr. Accessed 7 February 2022. (in Korean)
  34. Moritz, M.A., Parisien, M.A., Batllori, E., Krawchuk, M.A., Van Dorn, J., Ganz, D.J., and Hayhoe, K. 2012. Climate change and disruptions to global fire activity. Ecosphere 3(6): 1-22.
  35. Osterkamp, W.R. and Hupp, C.R. 2010. Fluvial processes and vegetation-glimpses of the past, the present, and perhaps the future. Geomorphology 116(3-4): 274-285. https://doi.org/10.1016/j.geomorph.2009.11.018
  36. Poff, N.L. 2002. Ecological response to and management of increased flooding caused by climate change. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 360(1796): 1497-1510. https://doi.org/10.1098/rsta.2002.1012
  37. Roux, H., Labat, D., Garambois, P.A., Maubourguet, M.M., Chorda, J., and Dartus, D. 2011. A physically-based parsimonious hydrological model for flash floods in Mediterranean catchments. Natural Hazards and Earth System Sciences 11(9): 2567-2582. https://doi.org/10.5194/nhess-11-2567-2011
  38. Sigafoos, R.S. 1964. Botanical evidence of floods and flood-plain deposition (Vol. 485). US Government Printing Office, Washington, D.C., USA.
  39. Son, M., Sung, J.Y., Chung, E.S., and Jun, K.S. 2011 Development of flood vulnerability index considering climate change. Journal of Korea Water Resources Association 44(3): 231-248. (in Korean) https://doi.org/10.3741/JKWRA.2011.44.3.231
  40. Stanford, J.A., Lorang, M.S., and Hauer, F.R. 2005. The shifting habitat mosaic of river ecosystems. Internationale Vereinigung fur theoretische und angewandte Limnologie: Verhandlungen 29(1): 123-136.
  41. Stoyan, D. and Penttinen, A. 2000. Recent applications of point process methods in forestry statistics. Statistical science 15(1): 61-78. https://doi.org/10.1214/ss/1009212674
  42. Tealdi, S., Camporeale, C., and Ridolfi, L. 2013. Inter-species competition-facilitation in stochastic riparian vegetation dynamics. Journal of Theoretical Biology 318: 13-21. https://doi.org/10.1016/j.jtbi.2012.11.006
  43. Webster, P.J., Holland, G.J., Curry, J. A., and Chang, H. R. 2005. Changes in tropical cyclone number, duration, and intensity in a warming environment. Science 309(5742): 1844-1846. https://doi.org/10.1126/science.1116448
  44. Woo, H. and Han, S. 2020. Typological system of nature-based solutions and its similar concepts on water management. Ecology and Resilient Infrastructure 7(1): 15-25. (in Korean) https://doi.org/10.17820/eri.2020.7.1.015
  45. Woo, H., Cho, K.H., Jang, C.L., and Lee, C.J. 2019. Fluvial processes and vegetation - research trends and implications. Ecology and Resilient Infrastructure 6(2): 89-100. (in Korean) https://doi.org/10.17820/ERI.2019.6.2.089