DOI QR코드

DOI QR Code

점봉산 신갈나무 낙엽의 분해율과 미기상요인과의 상관관계 분석

Correlation between litter decomposition rate of Quercus mongolica leaf and microclimatic factors at Mt. Jeombongsan

  • 원호연 (국립생태원 기후생태관측팀) ;
  • 이영상 (국립생태원 기후생태관측팀) ;
  • 이재석 (건국대학교 생명과학특성학과) ;
  • 이일환 (국립생태원 기후생태관측팀)
  • Ho-Yeon Won (Ecological Observation Team on Climate Change, National Institute of Ecology) ;
  • Young-Sang Lee (Ecological Observation Team on Climate Change, National Institute of Ecology) ;
  • Jae-Seok Lee (Depatement of Biological Sciences, Konkuk University) ;
  • Il-Hwan Lee (Ecological Observation Team on Climate Change, National Institute of Ecology)
  • 투고 : 2022.10.13
  • 심사 : 2022.12.02
  • 발행 : 2022.12.31

초록

기후변화에 따른 산림생태계의 기능 변화를 파악하기 위해 산림생태계의 중요한 기능인 낙엽분해율과 미기상 요인과의 상관관계를 분석하였다. 2017년 1월부터 48개월간 동사면과 서사면에 설치된 낙엽주머니를 통해 낙엽의 분해율을 분석하고 연구지소의 미기상요인(대기온도, 토양온도, 토양수분)을 관측하여 상관관계를 도출하였다. 48개월 경과 후 신갈나무 낙엽의 잔존율은 동사면과 서사면에서 각각 27.1±1.3%, 37.0±3.6%로 감소하였으며, 이에 따른 낙엽의 분해상수(k)는 동사면과 서사면에서 각각 0.33, 0.25로 나타났다. 신갈나무 낙엽의 초기 C/N비율은 38.5이었으며 시간이 경과함에 따라 감소하여 48개월 경과 후 동사면과 서사면의 C/N비율은 각각 13.4, 16.7로 나타났다. 연구지소의 조사기간 동안 평균 대기온도 및 토양온도는 동사면과 서사면에서 각각 8.2±9.0, 9.1±9.3과 8.5±7.4, 9.3±7.3℃로 서사면에서 더 높게 나타났다. 토양수분의 경우, 동사면과 서사면에서 평균 19.4±11.0, 20.5±5.7%로 큰 차이를 보이지 않았으나 연간 변화 양상이 다소 다르게 나타났다. 분석된 낙엽의 분해율과 미기상 요인과의 상관관계를 분석해본 결과, 동사면에서 낙엽분 해율과 토양수분이 양의 상관관계를 갖는 것으로 나타나, 낙엽분해율은 토양수분량에 영향을 받는 것으로 나타났다. 본 연구를 통해 향후 기후변화에 따른 폭우, 폭설 등의 영향이 산림생태계의 기능에 미치는 변화에 대응할 수 있는 기초자료를 제공하고자 한다.

To understand functional changes of forest ecosystems due to climate change, correlation between decomposition rate of leaf litter, an important function of forest ecosystems, and microclimatic factors was analyzed. After 48 months elapsed, percent remaining weight of Quercus mongolica leaf litter was 27.1% in the east aspect and 37.0% in the west aspects. Decay constant of Q. mongolica leaf litter was 0.33 in the east aspect and 0.25 in the west aspect after 48 months elapsed. Initial C/N ratio of Q. mongolica leaf litter was 38.5. After 48 months elapsed, C/N ratio of decomposing Q. mongolica leaf litter decreased to 13.43 in the east aspect and 16.72 in the west aspect. Average air temperature and soil temperature during the investigation period of the research site were 8.2±9.0 and 9.1±9.3 in the east and 8.5±7.4 and 9.3±7.3℃ in the west aspect, respectively, with the west aspect showing higher air and soil temperatures. Soil moisture showed no significant difference between east and west aspects (average soil moisture: 19.4±11.0% vs. 20.5±5.7%). However, as a result of analyzing the correlation between decomposition rate and microclimatic factors, it was found that the decomposition rate and soil moisture has a positive correlation(r=0.426) in the east aspect but not in the west aspect. Our study shows that the correlation between decomposition rate and microclimatic factors can be significantly different depending on the direction of the aspect.

키워드

과제정보

본 논문은 환경부의 재원으로 국립생태원의 지원을 받아 수행하였습니다(NIE-고유연구-2022-02).

참고문헌

  1. Aerts R. 2006. The freezer defrosting: global warming and litter decomposition rates in cold biomes. J. Ecol. 94:713-724. https://doi.org/10.1111/j.1365-2745.2006.01142.x 
  2. Berg B, K Hannus, T Popoff and O Theander. 1982. Changes in organic chemical components of needle litter during decomposition. Long-term decomposition in a Scots pine forest. I. Can. J. Bot. 60:1310-1319. https://doi.org/10.1139/b82-167 
  3. Berg B and O Theander. 1984. Dynamics of some nitrogen fraction in decomposition Scots pine needle litter. Pedobiologia 27:264-267. https://doi.org/10.1139/b88-212 
  4. Berg B and G Agren. 1984. Decomposition of needle litter and its organic chemical components: theory and field experiments. Long-term decomposition in a Scots pine forest. III. Can. J. Bot. 62:2880-2888. https://doi.org/10.1139/b84-384 
  5. Berg B, MP Berg, P Bottner, E Box, A Breymeyer, RC de Anta and M Madeira. 1993. Litter mass loss rates in pine forests of Europe and Eastern United States: some relationships with climate and litter quality. Biogeochemistry 20:127-159.  https://doi.org/10.1007/BF00000785
  6. Black CA, DD Evans and RC Dinauer. 1965. Methods of Soil Analysis. American Society of Agronomy. Madison, WI. 
  7. Blanco JA, JB Imbert and FJ Castillo. 2008. Nutrient return via ltterfall in two constrating Pinus sylvestris forests in the Pyrenees under different thinning intensities. For. Ecol. Manage. 256:1840-1852. https://doi.org/10.1016/j.foreco.2008.07.011 
  8. Bocock KL. 1964. Changes in the amount of dry matter, nitrogen, carbon and energy in decomposing woodland leaf litter in relation to the activities of soil fauna. Eco. 52:273-284. 
  9. Carlisle A, AHF Brown and EJ White. 1966. The organic matter and nutrient elements in the precipitation beneath a sessile oak (Quercus petraea) canopy. Ecology 54:87-98. https://doi.org/10.2307/2257660 
  10. Chang NK and JH Yoo. 1986. Annual fluctuations and vertical distributions of cellulase, xylanase activities and soil microorganisms in humus horizon of a Pinus rigida stand. Korean J. Ecol. 9:231-241. 
  11. Chapin FS, PA Matson, HA Mooney and PM Vitousek. 2002. Principles of Terrestrial Ecosystem Ecology. Springer. New York. 
  12. Chen Y, Y Liu, J Zhang, W Yang, R He and C Deng. 2018. Microclimate exerts greater control over litter decomposition and enzyme activity than litter quality in an alpine forest-tundra ecotone. Sci. Rep. 8:1-13. https://doi.org/10.1038/s41598-018-33186-4 
  13. Cole DW and M Rapp. 1981. Elemental cycling in forest ecosystems. pp. 341-409. In: Dynamic Properties of Forest(Reiche DE, ed.). International Biological Programme 23. Cambridge University Press. Cambridge. 
  14. Cotrufo MF, MD Wallenstein, CM Boot, K Denef and E Paul. 2013. The Microbial E fficiency Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Glob. Change Biol. 19:988-995. https://doi.org/10.1111/gcb.12113 
  15. Gavazov KS. 2010. Dynamics of alpine plant litter decomposition in a changing climate. Plant Soil 337:19-32. https://doi.org/10.1007/s11104-010-0477-0 
  16. Fogel R and K Cromack Jr. 1977. Effect of habitat and substrate quality on Donglas-fir litter decomposition in western Oregon. Can. J. Bot. 55:1632-1640. https://doi.org/10.1139/b77-190 
  17. Heal OW, JM Anderson and MJ Swift. 1997. Plant litter quality and decomposition: an historical overview. pp. 3-45. In: Driven by Nature: Plant Litter Quality and Decomposition(Cadisch G and KE Giller, eds.). CAB International. Wallingford, UK. 
  18. Hicks JR and R Ray. 1984. Relationship of aspect to soil nutrients, species importance and biomass in a forested watershed in West Virginia. For. Ecol. Manage. 8:281-291. https://doi.org/10.1016/0378-1127(84)90060-4 
  19. Jensen V. 1974. Decomposition of angiosperm tree leaf litter. pp. 69-104. In: Biology of Plant Litter Decomposition. Vol.1. (Dickson CH and GJF Pugh, eds.). Academic Press. New York. 
  20. Kelly JM and JJ Beauchamp. 1987. Mass loss and nutrient changes in decomposing upland oak and mesic-mixed hardwood leaf litter. Soil Sci. Soc. Am. J. 51:1616-1622. https:// doi.org/10.2136/sssaj1987.03615995005100060038x 
  21. Kim CM and NK Chang. 1965. The decomposition rate of litter affecting the amount of mineral nutrients of forest soil in the Korea. Bull. Ecol. Soc. Am. Sep. p. 14. 
  22. Kim JK and NK Chang. 1989. Litter production and decomposition in the Pinus rigida plantation in Mt. Kwan-ak. J. Ecol. Field Biol. 12:9-20. 
  23. Lee IH, SU Jo, YS Lee and HY Won. 2021. The long-term decay rate and nutrient dynamics during leaf litter decomposition of Pinus densiflora and Pinus thunbergii. Korean J. Environ. Biol. 39:374-382. https://doi.org/10.11626/KJEB.2021.39.3.374 
  24. Liu P, J Huang, OJ Sun and X Han. 2010. Litter decomposition and nutrient release as affected by soil nitrogen availability and litter quality in a semiarid grassland ecosystem. Oecologia 162:771-780. https://doi.org/10.1007/s00442-009-1506-7 
  25. Meentemeyer V, EO Box and RT Thompson. 1982. World patterns and amounts of terrestrial litter production. BioScience 32:125-128. https://doi.org/10.2307/1308565 
  26. Melillo JM, JD Aber and JF Muratore. 1982. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63:621-626. https://doi.org/10.2307/1936780 
  27. Millar CS. 1974. Decomposition of coniferous leaf litter. pp. 105-128. In: Biology of Plant Litter Decomposition. Vol. 1.(Dickson CH and GJF Pugh, eds.). Academic Press. New York. 
  28. Mun HT. 2009. Weight loss and nutrient dynamics during leaf litter decomposition of Quercus mongolica in Mt. Worak National Park. J. Ecol. Field Biol. 32:123-127. https://doi.org/10.5141/JEFB.2009.32.2.123 
  29. Namgung, J. 2010. Production and nutrient cycling in the Quercus varialilis forest at Mt. Worak. Ph.D. Thesis. Kongju University. Gongju, Korea. p. 58. 
  30. Olsen C. 1932. Studies of nitrogen fixation: nitrogen fixation in the dead leaves of forest beds. Compt Rend Trav Lab Carlsberg. 19: 36. 
  31. Olson JS. 1963. Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44:321-331. https://doi.org/10.2307/1932179 
  32. Ono K, S Hiradate, S Morita, K Ohse and K Hirai. 2011. Humification processes of needle litters on forest floors in Japanese cedar (Cryptomeria japonica) and Hinoki cypress (Chamaecyparis obtusa) plantations in Japan. Plant Soil 338:171-181. https://doi.org/10.1007/s11104-010-0397-z 
  33. Park IH and GS Moon. 1994. Biomass, net production and biomass estimation equations in some natural Quercus forests. J. Korean For. Soc. 83:246-253 
  34. Petraglia A, C Cacciatori, S Chelli, G Fenu, G Calderisi, D Gargano and M Carbognani. 2019. Litter decomposition: effects of temperature driven by soil moisture and vegetation type. Plant Soil 435:187-200. https://doi.org/10.2307/3546886 
  35. Prescott CE. 2010. Litter decomposition: what controls it and how can we alter it to sequester more carbon in forest soils? Biogeochemistry 101:133-149. https://doi.org/10.1007/s10533-010-9439-0 
  36. Ran X, Y Qian, M Fuhong, W Xianzhi and S Yuying. 2018. Slope aspect influences plant biomass, soil properties and microbial composition in alpine meadow on the Qinghai-Tibetan plateau. J. Soil Sci. Plant Nutr. 18:1-12. https://doi.org/10.4067/S0718-95162018005000101 
  37. Seereeram S and P Lavender. 2003. Analysis of Leaf Litter to Establish Its Suitability for Compositing to Produce a Commercially Saleable Product. A Report Prepared for SWAP. p. 18. 
  38. Swift MJ, OW Heal and JM Anderson. 1979. Decomposition in Terrestrial Ecosystems. Studies in Ecology. Vol. 5. University of California Press. Berkley, CA. p. 372. 
  39. Wang Z, X Yin and X Li. 2015. Soil mesofauna effects on litter decomposition in the coniferous forest of the Changbai Mountains, China. Appl. Soil Ecol. 92:64-71. https://doi.org/10.1016/j.apsoil.2015.03.010