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The Impact of COVID-19 on Jobs in Korea: 
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This paper studies how COVID-19 has affected the labor market in 
Korea through a general equilibrium model with multiple industries 
and occupations. In the model, workers are allocated to one of many 
occupations in an industry, and industrial or occupational shocks alter 
the employment structure. I calibrate the model with Korean data and 
identify industrial and occupational shocks, referred to here as COVID-
19 shocks, behind the employment dynamics in 2020 and 2021. I find 
that COVID-19 shocks are more severe for those with jobs with a higher 
risk of infection and in those that are more difficult to do from home. 
Interestingly, the relationship between COVID-19 shocks and infection 
risk weakened as the pandemic progressed, whereas the relationship 
between COVID-19 shocks and easiness of work-from-home 
strengthened. I interpret the results as meaning that the pandemic may 
direct future technological changes to replace tasks that require 
contact-intensive steps, and I simulate the impact of such technological 
changes through the lens of the model. The results show that such 
technological changes will lower the demand for manual workers 
compared to the demands for other occupations. This contrasts with the 
earlier trend of job polarization, where manual workers continued to 
increase their employment share, with the share of routine workers 
secularly declining at the same time. 
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  I. Introduction 
 

OVID-19 has led the world economy to the worst economic crisis since the 
Great Depression. The IMF’s World Economic Outlook estimates a -3.1% drop 

in global GDP in 2020, a much more severe recession than the -0.1% drop in global 
GDP during the Global Financial Crisis. The labor market was hit especially hard by 
the spread of the virus. COVID-19 dampened labor demand and reduced the labor 
supply due to quarantine policies and fear of infection. In Korea, the number of 
employed persons decreased by 1.8% (473 thousands persons) from February of 
2020 to February of 2021. 

The economic impact of the pandemic may not be confined to a short-term 
recession. Structural changes in the labor market were underway even before the 
pandemic, and these changes continued intensively during the economic recession. 
Many studies have documented a declining trend of middle-skill routine worker 
employment (as opposed to high-skill cognitive workers and low-skill manual 
workers) over several decades, a phenomenon referred to as job polarization. This 
disappearance of middle-skill jobs has also been more prominent during economic 
recessions as compared to normal times (Jaimovich and Siu, 2020). The recent 
recession with the COVID-19 pandemic, not an exception, could also accelerate 
structural changes in the labor market. 

The pandemic appears to affect not only the speed but also the direction of 
structural changes in the labor market. The COVID-19 recession has had 
significantly heterogeneous impacts across industries and occupations compared to 
previous recessions (Aum, Lee, and Shin, 2021a). The heterogeneous nature of the 
COVID-19 shock implies that relative productivity levels between occupations and 
industries must have diverged to a substantial extent during the pandemic, likely 
affecting the direction of technological change. Therefore, as researchers grope for 
the direction of change in the labor market structure after the COVID-19 pandemic, 
analyses of the nature of shocks that stand out during the pandemic are necessary. 

This paper aims to identify COVID-19 shocks that differ across industries and 
occupations during the pandemic, thereby deriving implications pertaining to the 
post-COVID-19 labor market structure. To this end, I introduce a general equilibrium 
model with multiple industries and occupations in which agents are allocated to one 
of many occupations in one of many industries. Each industry employs all 
occupations but with different intensities, and hence both industry- and occupation-
specific shocks alter the industrial and occupational employment structures 
simultaneously. For example, when an occupational shock hits service jobs, it affects 
the industrial structure as well because the fraction of service jobs differs across 
industries. The model suitably captures structural changes in the labor market before 
the pandemic and hence enables us to compare past trends and future changes within 
a single framework. 

I calibrate the model based on Korean data in 2019, just prior to the pandemic, 
after which I estimate the industrial and occupational productivity shocks that 
generate Korea’s employment dynamics in 2020 and 2021. To examine the 
characteristics of the identified shocks, I check whether and how the shocks correlate 
with the infection risk or the easiness of work from home by industry and occupation. 

C
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The results are mainly twofold. 
First, during the pandemic, employment was hit harder in industries and 

occupations with higher infection risks and/or difficulties in work from home. In 
particular, the easiness of work from home was more closely linked to occupational 
shocks than industrial shocks, implying that it is crucial to pay particular attention to 
occupational heterogeneity to understand employment dynamics in Korea. 

Second, the relationship between employment shocks and the infection risk or 
easiness of work from home varies over time. In 2020, when employment fell rapidly 
due to the spread of COVID-19, only the risk of infection showed a significant 
correlation with COVID-19 shocks. However, in 2021, when employment began 
gradually to recover, the correlation with easiness of work from home became more 
significant, whereas the correlation with the risk of infection weakened. This result 
seems to indicate that the risk of infection was important in the earlier stage of the 
pandemic, whereas easiness of work-from-home gradually came to eclipse the risk 
of infection as the pandemic progressed. In this regard, I consider that the effect of 
infection risk is transitory, while the effect of easiness of work-from-home is more 
structural and of the type of effect to which technology responds. That is, the cost of 
contact-intensive tasks rose sharply during the pandemic, especially in its later stage, 
inducing technological progress to replace such tasks. Recent technological changes 
have already made the replacement of contact-intensive tasks feasible, as seen in 
telemedicine, smart finance, and online education platforms. The rapid growth of the 
online-to-offline (O2O) market before and during the pandemic also suggests that 
replacing contact-intensive tasks is feasible to some extent. These incentives and the 
feasibility issue indicate the possibility that technological changes will accelerate the 
replacement of contact-intensive tasks in the future. 

Against this backdrop, I utilize the model to quantify the impacts of the Contact-
intensive task Biased Technological Changes (henceforth CBTC) on employment 
structures in the future, though accurately predicting the future direction of 
technological change is not possible. Specifically, I compare the employment 
structure over the next five years with and without CBTC as measured based on each 
occupation’s easiness of work from home. Note that CBTC in this paper would have 
distinct implications on the labor market structure from Routine Biased 
Technological Change (henceforth RBTC), a widely accepted view in the recent 
literature before the pandemic. Jobs have been polarized at least since 1980, and the 
polarization of the labor market has been often linked to the effect of RBTC (Autor, 
Levy, and Murnane, 2003, Autor and Dorn, 2013, among others). Specifically, the 
RBTC hypothesis argued that the rapid evolution of IT technology has displaced jobs 
that mainly involve routine tasks, which are mostly middle-wage jobs. At the same 
time, RBTC raised the demand for both low-wage manual workers and high-wage 
cognitive workers, leading to the disappearance of middle-skill routine jobs  

The simulation results in this paper confirm that CBTC has a different impact on 
the labor market structure from RBTC. Specifically, CBTC reduces the demand for 
manual workers compared to the pre-COVID-19 trend. Accordingly, due to CBTC, 
the decline of routine workers is eased and the demand for cognitive workers 
becomes stronger compared to the earlier trend. This result contrasts with the 
significant increase in manual employment, accompanied by the decline in routine 
employment before the pandemic, i.e., job polarization driven by RBTC. An example 
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that can illustrate the different impacts of CBTC from RBTC is the widespread use 
of kiosks in restaurants during the pandemic. Kiosks not only automate the routine 
receipt of food orders but also reduce face-to-face contact between customers and 
workers. In the view of my analysis, this type of automation differs from the 
automation of an assembly process in a manufacturing plant, which only replaces 
routine tasks. 

The remainder of the paper is as follows. Section 2 introduces the model. In 
Section 3, I set the parameter values of the model based on Korean data. Section 4 
identifies and examines the characteristics of structural shocks by industry and 
occupation ultimately to explain the labor market in 2020 and 2021. Section 5 
discusses implications related to structural changes in the post-COVID-19 labor 
market if technological changes continue to replace contact-intensive tasks in the 
coming years. Section 6 concludes the paper. 

 
II. Model 

  
The model here is a multi-sector macroeconomic model similar to that of Aum, 

Lee, and Shin (2018). Different from Aum, Lee, and Shin (2018), I do not distinguish 
between different types of capital goods, instead stressing the endogenous allocation 
of labor into both industry and occupation. The endogenous determination of the 
industrial and occupational structure enables an analysis of structural changes both 
in an occupational dimension and an industrial dimension. There are at least two 
reasons why I focus on both industrial and occupational dimensions simultaneously. 

First, because the labor market has undergone structural changes before the 
pandemic, it is necessary to take past trends into account for a clear understanding 
of how the post-pandemic labor market structure would be different with and without 
the pandemic. It is well known that previous structural changes appeared in both 
industrial and occupational dimensions. For example, there has been a continuous 
decline in the employment share of routine jobs, a phenomenon referred to as job 
polarization. Also, the employment shares of manufacturing industries shrink during 
the process of structural transformation. I examine whether this trend will continue 
to prevail for the post-pandemic labor market structure. 

Second, the COVID-19 shock has a heterogeneous nature in terms of both industry 
and occupation. The two main channels by which COVID-19 deters economic 
activities are fear of infection and restrictions on face-to-face contact due to 
quarantine policies, which vary across industries and occupations (Aum, Lee, and 
Shin, 2021b). For example, Aum, Lee, and Shin (2021a) showed that the labor 
market impact of COVID-19 has been very heterogeneous across occupations, even 
after controlling for industrial effects.  

 
A. Environment 

 
The representative household maximizes utility under the given budget constraints 

as follows: 
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where tC  denotes consumption, tI  is investment, and tY  is total output. 
The law of motion for capital is expressed as 
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where tK  is capital stock and   represents the rate of depreciation. 
Final goods are produced by combining industry output using the CES aggregator, 

as follows: 
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An industry i  produces industrial output using capital and labor, where labor is 
a composite of J  occupations. Specifically, an industry i ’s output is given by 
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where ,i tA   is industry i  ’s productivity, ,i tK   is industry i  ’s capital stock, ,i tZ  
is industry i  ’s labor composite, , ,i j tL   is the labor supplied to industry i   and 
occupation j  , and ,j tM   is occupation j  ’s productivity. The parameter   
captures the elasticity of substitution across occupations (or tasks), and ij   is a 
weight parameter of occupation j  used in industry i . 

Note that ij  in equation (3) differs both by industry i  and occupation j  such 
that any change in occupation-specific productivity jM  has heterogeneous effects 
across industries as well. Similarly, a change in industry-specific productivity iA  
also alters occupational employment because each industry employs labor at 
different levels of intensity. 

 
B. Equilibrium 

 
The final goods producer solves the following profit maximization problem: 
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where ip  is the price of industry i  normalized by the price of the final goods; 
here I normalize the price of final goods to one. 

Solving the final goods producer’s problem, we obtain  
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where R  is the rate of return on capital and 𝑤 is the effective wage rate per unit 
of labor. 

From equation (2), a solution to the industry-level producer’s problem can be 
expressed as 
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The market clearing conditions are 
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Finally, the representative household’s problem is expressed as 
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C. Model Solution 
 

Given labor endowment L   and capital endowment K  , I compute the 
equilibrium allocation as shown below. For notational convenience, I denote 
industrial capital stock per capita as ( / )i i ik K L , industrial output per capita as 

( / )i i iy Y L , and industrial labor composite per capita as ( / )i i iz Z L . 
From equation (6), I have 1 1 1/ / ( )ij i ij j iL L M M     for all j . Therefore, we can 

express the occupational share in industry i  ’s employment and industrial labor 
composite per capita as 

(9)       1/ ,ij i ij j iL L M V      
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From equations (5), (6), and (9), we have / / [(1 ) ]i i iR w k   . Accordingly, 
the ratio of capital stock per capita between two industries ( i  and I ) satisfies 
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Also, from equations (4) and (5), 

1 1 1

.i i i i i

I I I I I

k y L
k y L


   

 




      
       
      

 

Combining this with equation (2), we have the following expression for the ratio 
of industrial employment. 
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At this point, I can compute the ratio of industrial employment and industrial 
capital per capita from equations (11) and (12) and hence industrial employment and 
capital stock. Substituting industrial employment and capital stock into equation (2), 
we can compute industrial output ( iY  ). Subsequently, we can compute the final 
output (Y ) from equation (1) and the industrial price ( ip ) from equation (4). The 
equilibrium level of rate of return ( R  ) and the wage rate ( w  ) are obtained 



8 KDI Journal of Economic Policy MAY 2022 

correspondingly from equations (5) and (6). Lastly, substituting industrial 
employment into equation (9), we find the occupational employment in each industry 
( ijL ), from which occupational employment is determined, as follows: 

(13)        1( ) .j ij ij j i i
i i

L L M V L       

Equations (9), (12), and (13) show how changes in exogenous productivity iA  
and jM  affect industrial and/or occupational employment. For example, a rise in 

iA  would reduce the price of industry i , ip . When the elasticity of substitution 
across industries is less than one ( 1  ), the amount of input in industry i  would 
become smaller. The first bracket in equation (12) shows this substitution effect. 

Each industry employs all occupations with different levels of intensity, meaning 
that changes in occupational productivity ( jM ) also affect the industrial total factor 
productivity and hence industrial employment. For example, a rise in jM  would 
increase iV  more in an industry that employs occupation j  more intensively than 
others (i.e., an industry with a higher ij ). This would affect industrial employment 
through the second bracket on the right-hand side of equation (12). More formally, 
industry i  ’s production is 1 1i i i

i i i i iY A Z K L      from equations (2) and (10), 
indicating that industry i  ’s measured total factor productivity is 1 i

i iA Z   , a 
combination of these values of iA  and jM . 

Similar to industrial employment, changes in both iA  and jM  affect occupational 
employment. Changes in jM   would alter occupational employment directly in 
equation (13) and indirectly through changes in industrial employment iL . Because 
changes in iA   alter industrial employment, they also affect occupational 
employment, as shown in equation (13).  

Note that an increase in jM  would raise demand for occupation j  (equation 13). 
Given that 1:j jM M   , an increase in jM  is associated with an increase in jM  if 

1   and a decrease in jM  if 1  . Empirically, the literature finds elasticity 
of substitution across different occupations to be less than one, implying that an 
increase in occupation-specific productivity can be interpreted as technological 
progress substituting for labor in occupation j . 

 
III. Parameterization 

  
First, I define industry and occupation to connect the model with the data. The 

model’s industry and occupation are classified into thirteen industries and eight 
occupations referring to the Korean Standard Industry Classification (KSIC), 
Economic Activities in the National Account, and the Korean Standard Occupational 
Classification (KSOC) (see Table A1 for details). This classification yields 104 
(= 13 industries × 8 occupations) industry-occupation pairs, but I report parameter 
values for three broad industries and three broad occupations in the main text for an 
intuitive explanation, while reporting detailed results in Appendix A. The three broad 
occupational groups are set as cognitive, routine, and manual occupations, following  
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TABLE 1—CATEGORIES OF INDUSTRY AND OCCUPATION 
 Broad categories Detailed categories 

Industry (i) Manufacturing Manufacturing (1), Construction (3) 
 

Contact-intensive 
services 

Electricity, gas, water supply (2), Wholesale and retail, 
accommodation, and food (4), Transportation and storage (5), 
Business support (9), Human health and social work (11) 

 
Other services 

Finance and insurance (6), Real estate (7), Information and 
communication (8), Education (10), Cultural and other (12), 
Professional, scientific, and technical (13) 

Occupation (j) Cognitive Management (1), Professional (2) 
 

Routine Clerks (3), Sales workers (5), Craft and trades workers (6), and 
Equipment, machine operating and assembling workers (7) 

 Manual Service workers (4), Elementary workers (8) 

  
Acemoglu and Autor (2010), and the three broad industry categories are manufacturing, 
contact-intensive services, and other services. Classification of service industries is 
based on the industry’s employment-weighted average of work-from-home index, 
which I describe in detail later. Table 1 summarizes the industrial and occupational 
classifications.  

 
A. Estimation of production function parameters 

 
The parameters of the final goods production function in equation (1) are the 

elasticity of substitution between industries ( ) and the weight parameters ( i ). From 
the equilibrium condition in equation (4), I formulate the following relationship: 

1 1log log log .i i i i

I I I I

pY Y
p Y Y

 
  


   

I estimate the equation above by the iterated feasible generalized non-linear least 
squares (IFGNLS) method following Herrendorf, Rogers, and Valentinyi (2013). 
Because the substitution elasticity is greater than 0 and the weight parameters are 
located between 0 and 1, the estimation equation becomes 

log (1 ) log ,b bi i i
i i

I I I

pY Ye c e u
p Y Y

     

where the elasticity of substitution ( 1 / (1 )be    ) and the weight parameters 
( / (1 )i ic c

i e e     are inferred from estimates of b  and ic . The sample period 
is from 2005 to 2019, and the nominal and the real value added by economic activity 
from the National Accounts correspond to i ip Y  and iY , respectively. 

The estimation results are shown in Table 2. The estimated value of the elasticity 
of substitution between industries is 0.503 within the range of the values in previous 
studies that report complementarities ( 1   ) in one-digit industry classification 
schemes. 
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TABLE 2—ESTIMATION RESULTS: FINAL PRODUCTION 

Parameter Estimates 

  0.503 

manu  0.156 

.contact serv  0.380 

.other serv  0.464 

AIC -980.79 

Source: Author’s calculations. 

 
B. Calibration 

 
The elasticity of substitution between occupations ( ) governs how employment 

responds to a change in occupation-specific productivity ( jM  ). Unfortunately, 
occupation-specific productivity ( jM  ) and the elasticity of substitution between 
occupations (   ) are not separately identified in our model. Therefore, I set the 
elasticity of substitution between occupations to 0.65, an average value of estimates in 
previous studies.1 

Other parameters have been identified through the method of moments such that 
the data and endogenous variables of the model become similar in 2019. I calibrate 
the parameters to target the year 2019, not the average of 2010 to 2019, because one 
of the paper’s goals is to derive implications pertaining to structural changes over 
the medium run in the labor market after the pandemic. To do this, I assume that the 
year just before the pandemic represents the steady state and view the labor market 
after the pandemic as a transitional path from one steady state to another steady state. 
Note that this is somewhat different from the analysis of the business cycle, where 
average values over total sample periods are usually set as the steady state and where 
the analysis focuses on the short-run deviation from the steady state. 

To be specific, I calibrate the values of ij  such that they match the employment 
share by occupation and by industry, the value of i  to match the labor income share 
by industry, and the values of ,2019iA  to match the capital stock by industry as well as 
the level of aggregate output per total employment. Note that the model does not allow 
aggregate shocks to employment and the levels of total employment are given 
exogenously. That is, the model takes aggregate fluctuations as given and instead 
focuses on structural changes in the allocation of employment across industries and 
occupations. I therefore normalize the total number of workers in 2019 and the values 
of ,2019jM  to one. I then infer changes in the values of iA , and jM  for the last 
decade (i.e., between 2010 and 2019) from the changes in employment by occupation 
and by industry. More specifically, I set the ,2010iA  to match industrial employment 
and the aggregate level of output in 2010 and the ,2010jM   to match occupational 
employment in 2010. I include detailed procedures for the calibration and data sources 
in Appendix A.  
 

1The elasticity of substitution between occupations ranges from 0.56 to 0.81 in previous studies. Specifically, 
Aum, Lee, and Shin (2018) find a value of 0.81, Aum (2020) finds 0.58, Lee and Shin (2017) show a value of 0.70, 
and Duernecker and Herrendorf (2020) report 0.56. 
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TABLE 3—CALIBRATED PARAMETERS 

Occupation intensity within industry (𝝂𝒊𝒋) 
Industry 

Occupation 

Cognitive Routine Manual 

Manufacturing 0.128 0.735 0.138 

Contact services 0.167 0.515 0.318 

Other services 0.452 0.399 0.148 

Industrial capital income share and growth of industry-specific productivity 

Industry 𝛼௜ log 𝐴௜,ଶ଴ଵଽ − log 𝐴௜,ଶ଴ଵ଴ 

Manufacturing 0.459 +0.061 

Contact services 0.236  -0.106 

Other services 0.408 +0.172 

Growth of occupation-specific productivity 

 
Occupation 

Cognitive Routine Manual log 𝑀௝,ଶ଴ଵଽ − log 𝑀௝,ଶ଴ଵ଴ +0.119 +0.212 +0.140 

Source: Author’s calculations. 

  
Table 3 summarizes the calibrated parameter values. The parameters for the 

occupational intensity levels ( ij ) reflect each industry’s employment structure by 
occupation. For example, the manufacturing industry features the highest fraction of 
routine workers compared to the services industries. Similarly, I can also confirm that 
the share of manual occupations is largest in the contact-intensive services industry, 
implying that a shock to routine occupations would disproportionately affect the 
manufacturing industry more, and a shock to manual occupations would have a more 
severe effect on contact-intensive industries. 

Not surprisingly, manufacturing is the most capital-intensive sector (the highest 
i ). Among the service industries, the contact-intensive services sector is more labor-

intensive than other services ( contact other  ). 
Between 2010 and 2019, the sector-specific productivity of the contact-intensive 

services sector declined most rapidly among the three broad sectors, but this should 
not be interpreted as a decline in total factor productivity, a combination of the sector-
specific productivity and occupation-specific productivity rates. The manufacturing 
sector experienced slower growth in sector-specific productivity than other services, 
possibly indicating that the rate of the decline of manufacturing employment slowed 
after the Great Recession. In addition, I could confirm that routine occupations 
experienced the fastest growth in their occupation-specific productivity rates in an 
occupational dimension. 

 
C. Model Fit 

 
The employment structure in the model is set to be equal to the data in 2019 in 

terms of construction. On the other hand, the model and the data do not match  
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FIGURE 1. COMPARISON OF THE 2010 EMPLOYMENT SHARES BETWEEN THE MODELS AND THE DATA 

Note: The x-axis is the share of employment by industry and occupation in the data, and the y-axis is the share of 
employment by industry and occupation in the model. The dotted line is the 45-degree line. 

Source: Author’s calculations. 

 
precisely in 2010 because only industrial shocks ( iA ) and occupational shocks ( jM ) 
are allowed to change between 2010 and 2019. Therefore, by examining how similar 
the employment structures in the model and data are in 2010, I check how well the 
model explains the employment structure in Korea before the pandemic. 

Figure 1 compares the employment share of the model with data by industry and 
occupation in 2010. The x-axis is the share of employment by industry and occupation 
in the data, and the y-axis is the share of employment by industry and occupation in 
the model. The dotted line is the 45-degree line. As shown in the figure, the 
employment shares in the model are very similar to the employment shares by industry 
and occupation observed in the data with an R-square value of.987, indicating that the 
model is suitable for an analysis of the employment structure in Korea. Again, 
aggregate variables should precisely match the data through the calibration procedure 
by construction. 

 
IV. COVID-19 Shocks and their Characteristics 

  
In this section, I estimate industry- and occupation-specific shocks ( iA  and jM ) 

from the employment dynamics during the COVID-19 periods, i.e., 2020 and 2021. 
Note that I refer to the industry- and occupation-specific shocks governing the 
employment dynamics during the COVID-19 periods as COVID-19 shocks. I then 
analyze the characteristics of COVID-19 shocks to understand the factors behind the 
employment dynamics during the pandemic. 

 
A. Identification of shocks 

 
The employment shocks during the COVID-19 period have a form that shows 

changes in iA  and jM . I identify iA  and jM  that match employment in 2020 
and 2021 as follows: 
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1) Set the total number of employed persons in 2020 and 2021 to the data. 

2) Set arbitrary values for ,j tM . 

3) Set arbitrary values for ,I tA  and ,I tk . 

4) Find ,i tk  based on ,I tk  and equation (11). 

5) Find ,i tA  for 2020 and 2021 from the following equation: 
1
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where ,
data
i tL  represents employment in industry i  at time t  in the data. 

6) Iterate 3) to 5) over ,I tA  and ,I tk  until tK  is equal to the capital stock in 2019 
and 2020 2019/Y Y  (or 2021 2019/Y Y ) is equal to economic growth in the data. 

7) Iterate 2) to 6) over jM  until , /j t tL L  in the model is equal to the data in 2020 
and 2021.2 

The procedure above produces iA   and jM   that match the thirteen industrial 
employment and eight occupational employment categories in 2020 and 2021 
precisely. However, even if the thirteen employment by industry and eight employment 
by occupation categories coincide with the data, the detailed 104 (=13×8) employment 
cells by industry and occupation may not exactly coincide with the data. To check the 
accuracy, I compare the model with the data for the detailed 104 employment cells in 
Figure 2, finding that the model suitably explains the employment structure by industry  

  
2020                                     2021 

  
FIGURE 2. COMPARISON OF THE 2010 EMPLOYMENT SHARES BETWEEN THE MODELS AND THE DATA 

Note: The x-axis is the share of employment by industry and occupation in the data, and the y-axis is the share of 
employment by industry and occupation in the model. The dotted line is the 45-degree line. 

Source: Author’s calculations. 

 
2To be specific, I use the Fsolve function in MATLAB for the iterations over 𝐴ூ,௧, 𝑘ூ,௧, and 𝑀௝. 
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and occupation during the pandemic. For example, the corresponding R-square 
outcomes between the occupational and industrial employment shares in the model 
and the data are 0.9975 and 0.9946 in 2020 and 2021, respectively. 

 
B. Characteristics of COVID-19 shocks 

 
Although I identify the shocks that generate the employment dynamics during the 

pandemic, the economic meaning of these shocks is not straightforward. In the 
model, the only sources of exogenous variations are changes in iA  and jM , which 
represent the productivity rates in each industry and each occupation. It would be 
natural to interpret these shocks as technological changes biased toward a certain 
industry or occupation when we focus on the long-run changes in the employment 
structure. However, there must be a much greater variety of shocks ongoing with 
regard to short-run fluctuations, such as markup, preference, and labor supply shocks, 
among others. Therefore, I would like to emphasize that the identified shocks herein 
should not be interpreted as structural sources of the variations in employment during 
the pandemic. Instead, the COVID-19 shocks identified herein should be understood 
as a combination of many structural shocks not explicitly reflected in the model. 

However, the primary purpose of the identification of shocks is to gain an idea of 
which characteristics of an occupation or industry would be related to the observed 
changes in employment, rather than to delineate the contributions of various structural 
shocks on employment dynamics. For example, an occupation with higher infection 
risk would show lower employment caused by factors on both the demand and supply 
sides, and our exercise does not provide a clue as to exactly how much of the decrease 
in employment stems from a specific reason. Our exercise is still useful in that it 
defines the general nature of heterogeneity involved in the overall shocks to a certain 
occupation or industry, despite the fact that we do not know the contribution of each. 

To provide economic implications with regard to COVID-19 shocks, I examine 
whether and how COVID-19 shocks are correlated with two variables that are 
suggested to be closely related to the pandemic in the literature: (1) the risk of infection 
and (2) easiness of remote work. 

Recent studies utilize O*NET data to calculate the risk of infection index, and 
O*NET or the American Time Use Survey (ATUS) data to measure the ease of remote 
work (Adams-Prassl et al., 2020; Aum, et al., 2021c; Dingel and Neiman, 2020; Hicks 
et al., 2020; Mongey et al., 2021). O*NET asks experts and workers to give numerical 
answers to questions that capture detailed characteristics of an occupation, as defined 
by the Standard Occupation Classification (SOC) code. The ATUS data measure the 
amount of time people spend on various activities. In particular, it asks about “time 
worked from home,” which varies across industries as well as occupations. 

I adopt the infection risk index and index for ease of remote work from Aum, Lee, 
and Shin (2021b) (henceforth work-from-home or wfh index) by industry and by 
occupation. The infection risk index is obtained using O*NET data examining the 
characteristics of each occupation in the US. Specifically, in O*NET, the degree of 
physical contact and exposure to diseases and infections are investigated and scored 
for each job. The infection risk index is the average value of two – the degree of 
physical contact and exposure to diseases and infections – after the standardization of  
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FIGURE 3. INFECTION RISK AND WORK-FROM-HOME INDEX BY INDUSTRY AND OCCUPATION 

Note: The x-axis is work-from-home index (wfh), and the y-axis is the infection risk index (infect). The size of the 
circle represents the share of employment by industry and occupation in 2019. 

Source: Author’s calculations based on O*NET, ATUS, and EAPS. 

 
each score. The work-from-home index is calculated using the weighted average of 
actual working at home in ATUS by industry and occupation. Finally, to match the 
indexes with our COVID-19 shocks, I assign US Census occupation codes and NAICS 
(North American Industry Classification System) to one-digit KSOC and KSIC. 

Figure 3 shows the infection risk index against the work-from-home index by 
industry and occupation in Korea. Specifically, the x-axis is the work-from-home 
index (wfh) and the y-axis is the infection risk index (infect). The size of the circle 
represents the share of employment by industry and occupation in 2019. There is a 
negative (-) correlation between the two indexes, meaning that jobs with a lower risk 
of infection are generally more easily done at home. However, there is also 
considerable deviation from the regression line, implying that one index cannot 
completely represent the other and that the two indexes need to be examined 
separately. Aum, Lee, and Shin (2021b) also emphasized that the relationship between 
two indexes is far from tight, with an R-squared value only 0.034. 

I estimate the following regression to examine the relationship between COVID-19 
shocks and the two indexes using employment by industry and occupation as a weight. 

1
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where wfh  is the work-from-home index (by industry and by occupation), infect  
is the risk of infection index (by occupation), ,j tM  is an occupation-specific shock, 
and ,i tA  is an industry-specific shock. Note that 1 0   if jobs with lower wfh  
outcomes (i.e., more difficult to do remote work) were hit harder by adverse 
employment shocks, and 2 0   if jobs with higher infection risk were hit harder 
by adverse employment shocks. The regression analysis would guide us to a better 
understanding of the underlying sources of the variation in employment shocks by 
industry and occupation during the pandemic. 
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TABLE 4—RELATIONSHIP BETWEEN COVID-19 SHOCKS AND THE WFH OR INFECTION RISK INDEXES 

 
Occupational shocks Industrial shocks 

All periods 2020 2021 All periods 2020 2021 

Work-from-home 1.105*** 
(0.152) 

0.284 
(0.185) 

1.900*** 
(0.198) 

0.165* 
(0.098) 

0.004 
(0.139) 

0.322** 
(0.138) 

Infection risk -0.111*** 
(0.017) 

-0.113***
(0.020) 

-0.109*** 
(0.022) 

-0.040*** 
(0.011) 

-0.044*** 
(0.015) 

-0.036** 
(0.015) 

R2 0.300 0.238 0.517 0.070 0.077 0.090 

Note: Standard error in parenthesis. *, **, and ** indicate significance at the 90%, 95%, and 99% percentiles, 
respectively. 

Source: Author’s calculations. 

 
Table 4 shows the estimation results, which deliver three main results. First, in 

both 2020 and 2021, we have 1̂ 0   and 2
ˆ 0  , confirming the intuition that jobs 

that are more difficult to do remotely and with a higher risk of infection were hit 
harder both by occupation shocks and industry shocks, although these relationships 
were not always significant. 

Second, the relationships vary over time. In 2020, when employment rapidly 
declined, COVID-19 shocks show a significant correlation only with infection risk. 
However, the work-from-home index began to show a significant correlation with 
COVID-19 shocks in 2021, as employment began gradually to recover. On the other 
hand, the coefficient of infection risk ( 2 ) becomes smaller in 2021 compared to 
this value in 2020. 

Third, both indexes, risk of infection and work-from-home, have tighter 
relationships with COVID-19 shocks in an occupational dimension than in an 
industrial dimension. For example, the R-squared outcome in the regression with 
occupational shocks is 0.300, whereas that with industrial shocks is only 0.070. In 
addition, the t-value corresponding to the relationship between the work-from-home 
index and industrial shocks was 1.69, significantly smaller than with occupational 
shocks, at 7.28. This is not surprising given that the easiness of remote work is 
mainly related to the tasks a worker performs as opposed to the industry in which 
she/he works. I interpret this as meaning that occupational heterogeneity plays a 
more critical role in deriving the employment structure during the pandemic. 

 
V. Post COVID-19 Employment Structure 

  
As of January of 2022, the COVID-19 virus continues to spread with multiple 

variants, and it remains uncertain as to when the pandemic will end and how COVID-
19 will affect the employment structure in the future. Nevertheless, I attempt to derive 
implications related to the post-pandemic employment structure in view of our model. 

 
A. Future Technological Changes 

 
The results in Section 4 suggest that COVID-19 raised the cost of employing 

contact-intensive tasks (specifically jobs for which the work-from-home is more 
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difficult). According to the literature on directed technological change (e.g., 
Acemoglu and Restrepo, 2018, among others), an increase in the cost of employing 
contact-intensive tasks provides incentives to implement technological changes to 
replace these tasks. A natural question is whether such technological changes are 
feasible. 

Although the literature has actively investigated the impact of technological 
changes on the labor market structure, it did not pay much attention to how contact-
intensive each job is and whether new technology can replace contact-intensive 
tasks. However, even before the pandemic, recent technological changes enabled the 
replacement of contact-intensive tasks to some extent. For example, the widespread 
use of food-delivery applications through various platforms has replaced food-
serving services in the restaurants with fewer workers. Many other examples indicate 
similar possibilities, such as the expansion of telemedicine due to the CPRSA Act in 
the US, the provision of online education services through the development of 
MOOC, or the development of smart-finance applications. Reflecting such trends, 
the Ministry of Science and ICT (2020; 2021) reports that the amount of O2O 
(online-to-offline) transactions in Korea grew by 22.3% in 2019, even before the 
pandemic, and its growth rate accelerated to 29.6% in 2020 through the pandemic. 
Therefore, I consider the acceleration of technological changes to replace contact-
intensive tasks as a scenario that merits investigation. 

 
B. Scenarios 

 
The baseline scenario is that only past trends continue for five years, with no 

additional effects from COVID-19 appearing. I label this scenario as the baseline 
scenario, or Scenario 1. 

 
Scenario 1. (past trends) For 2022 2026t  , occupation- and industry-specific 

productivity evolve as follows: 
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The expression above may seem complicated, but it merely says that the sector-
specific and occupation-specific productivity rates grow at the average rate of growth 
between 2010 and 2019. 

Compared to this scenario, I consider an alternative scenario in which the 
replacement of contact-intensive tasks will accelerate due to technological change 
biased toward contact-intensive task (CBTC) in the coming years. To reflect such 
technological changes, I assume that occupations with a lower work-from-home 
share will experience a more rapid increase in occupation-specific productivity 
compared to earlier trends. Hence, when new technologies replace contact-intensive 
tasks, occupations having more contact-intensive tasks will become relatively more 
productive. As shown in equation (13) in Section 2, a faster increase in an 
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occupation’s productivity reduces its demand when occupations are complementary 
to each other ( 1  ). Intuitively, firms allocate fewer resources to more productive 
tasks when tasks are complementary to each other. 

To be specific, the alternative scenario (scenario 2) is expressed as follows: 
 

Scenario 2. (past trends + COVID-19) For 2022 2026t   , occupation- and 
industry-specific productivity evolve as follows: 
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where jm  is defined as : (1 ) , 0.j j jm wfh wfh e       
 
Note that Scenario 2 is identical to Scenario 1 except for the jm   in the first 

equation. The additional term jm  captures CBTC, implying that the productivity 
rates of occupations that are difficult to do from home increase more rapidly. In other 
words, owing to CBTC ( jm ), j lM M  when 1 1j lwfh wfh   . Note again that 
the demand for occupation j   falls when jM   becomes higher when 1   
(equation 13). 

The parameter    governs the speed of CBTC and determines the distance 
between the productivity of the highest jwfh   and the productivity of the lowest 

jwfh  . I set 0.14   , referring to the average speed of divergence between the 
highest jM  and the lowest jM  between 2010 and 2019, the pre-pandemic period. 

Contrary to the previous section, the simulation exercise in this section is 
structural because I simulate a situation in which technological change is biased 
toward contact-intensive tasks. In other words, the simulation seeks to determine the 
structural effect of contact-intensive-task-biased technological changes on 
occupational and industrial employment rather than accurately to predict the 
employment dynamics after the pandemic. In this sense, I would like to clarify that 
the previous exercise does not provide evidence but suggests the possibility of 
CBTC. This is certainly a limitation of this analysis. Finding evidence of CBTC 
would require more data and analyses after the pandemic. This can be examined in 
future research. 

 
C. Simulation Results 

 
I simulate the model and the obtained equilibrium employment structures 

( , , /i j t tL L  ) under Scenario 1 and Scenario 2. Figure 5 depicts the occupational 
structures under the two scenarios. The line demarcated by the circle shows the 
observed employment share between 2005 and 2020. Not surprisingly, there was a 
declining trend in the routine employment share (-2.5%p between 2010 and 2021). 
Accompanying this trend, the cognitive employment share and manual employment 
share rose by +0.3%p and +2.3%p, respectively.  
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Cognitive                              Routine 

  
Manual 

 
FIGURE 5. OCCUPATIONAL STRUCTURE UNDER THE TWO SCENARIOS 

Note: The line marked with circles is the observed employment share in the data; the black dotted line is Scenario 
1, and the gray solid line is Scenario 2. 

Source: Author’s calculations. 

 
Similar to the continuous decline of routine employment before the pandemic, the 

routine employment share continues to fall by as much as -1.7%p for the next five 
years under the baseline scenario (solid gray line). At the same time, the cognitive 
employment share rises by +1.1%p, and the manual employment share rises by 
+0.6%p, a continuation of job polarization (or the declining trend of routine 
employment). 

When the replacement of contact-intensive task accelerates (black dotted line, 
Scenario 2), however, the manual employment share changes, turning negative 
(+0.6%p → -0.3%p). A reduction in the demand for manual employment translates 
into greater demand for routine and cognitive employment than in previous trends, 
leading to a smaller decline of the routine employment share (from -1.7%p in 
Scenario 2 to -1.1%p in Scenario 2) and even higher increases in the cognitive 
employment share (from +1.1%p in Scenario 1 to +1.4%p in Scenario 2). 

Equation (13) provides an idea as to why the replacement of contact-intensive 
tasks reduces the demand for manual workers. Because 1    in our calibrated 
model, an increase in jM  translates into a fall of jM ( 1: jM   ), which leads to a  
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    Manufacturing                    Contact-intensive Services 

  
Other Services 

 
FIGURE 6. INDUSTRIAL STRUCTURE UNDER THE TWO SCENARIOS 

Note: The line marked with circles is the observed employment share in data; the black dotted line is Scenario 1, 
and the gray solid line is Scenario 2. 

Source: Author’s calculations. 

  
reduction in jL  in Equation (13). Because jm  is higher for manual workers than 
for other occupations, manual workers experience lower demand compared to other 
types of employment. In other words, manual workers tend to have tasks that are 
difficult to complete from home (relatively lower jwfh ) and hence are substituted 
more by technological changes that replace tasks that cannot be done at home. 

I now turn to the industrial structure. Figure 6 shows the industrial employment 
structure under the two scenarios. In the data, the manufacturing employment share 
fell (-1.5%p from 2010 to 2021) and services employment increased through the 
process of structural transformation (circle-demarcated line). Within the service 
industry, the increase of line employment share focused on contact-intensive services 
(+2.6%p), whereas the share of other services (mostly high-skilled) experienced a 
decline (-1.1%p). 

When the previous trend continues (Scenario 1), the manufacturing employment 
share decreases by -1.0%p over the next five years, while the employment share of 
contact-intensive services increases by +1.5%p and the employment share of other 
services falls by -0.5%p. However, as the replacement of contact-intensive tasks 
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accelerates after the pandemic (Scenario 2), the demand for contact-intensive 
services will be reduced by -0.3%p over the next five years a -1.8%p reduction from 
+1.5%p in Scenario 1. As the demand for contact-intensive services decreases, the 
decline in manufacturing will ease, shifting from -1.0%p in Scenario 1 to -0.003%p 
in Scenario 2. Also, the demand for other services will boost the employment share 
of these workers by +0.3%p. 

 
Discussion 

 
The simulation results demonstrate that the acceleration of contact-intensive 

replacement technological changes (or CBTC) would alleviate the structural changes 
in employment observed in the past, such as job polarization. This would occur 
because jobs with more significant portions of contact tasks (i.e., remote work being 
more difficult) are different from jobs that involve routine tasks, which have been 
replaced heavily by earlier technological changes, also known as the IT revolution. 

It is important to note that these results should not be interpreted as meaning that 
routine tasks will not be replaced in the future. Instead, they suggest that a broader 
range of jobs, both routine tasks and contact-related tasks, may be in danger after the 
pandemic given the more recent technological changes that have occurred. I 
highlight the potential acceleration of the former type of automation due to the 
pandemic and present related implications with regard to occupational or industrial 
employment structures. 

The CBTC scenario (Scenario 2) includes technological changes reflecting past 
trends as well as the acceleration of contact-intensive task replacement. Although a 
contact-intensive task is different from a routine task, they are not mutually 
exclusive. In other words, jobs intensive in routine tasks may or may not be intensive 
in contact tasks. For a more precise interpretation, I classify jobs by both routineness 
and contact-intensiveness in Table 5. I classify jobs with a work-from-home index 
below average as contact-intensive jobs and those with a work-from-home index 
above average as non-contact-intensive jobs. This classification of routine and non-
routine jobs follows the literature, e.g., Acemoglu and Autor (2010). 

Before the pandemic, a widely accepted view with regard to the labor market 
structure was that routine jobs had disappeared, regardless of their degree of contact-
intensiveness. Our simulation is based on the possibility that contact-intensiveness 
can serve as an additional dimension of future technological changes due to the 
COVID-19 pandemic. Therefore, among routine jobs, the share of routine and 
contact-intensive jobs will decrease further, adding to the previous decline. In  

 
TABLE 5—OCCUPATIONAL CLASSIFICATION BY ROUTINENESS AND CONTACT-INTENSIVENESS 

 Contact-Intensive Non-Contact-Intensive 

Routine 
Craft and related trades workers, Sales 

workers, Equipment, machine operating 
and assembling workers. 

Clerks 

Non-Routine Service workers, elementary workers Managers, professionals, and related workers 

Note: 1) Contact-intensive jobs are those for which the wfh index is below average, and non-contact-intensive jobs 
are those for which the wfh index is above average, 2) The classification of routine and non-routine jobs follows 
Acemoglu and Autor (2010). 
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TABLE 6—LABOR FORCE COMPOSITION BY OCCUPATIONAL GROUPS IN 2020 
(Unit: %) 

 Manual Routine Cognitive 

Age ≥ 60 31.4  18.1  6.3  

Less than high school 77.6  56.0  13.0  

Temporary and daily workers 45.0  15.3  9.9  

Source: Economically Active Population Census (2020). 

 
addition, the share of non-routine and non-contact-intensive jobs will increase more 
rapidly than in the past. Most interesting is that the demand for non-routine and 
contact-intensive jobs, i.e., manual jobs, shifts from increasing to decreasing with 
the widest gap between the two scenarios, as highlighted in Section 5.C. 

Table 6 compares the employment composition of manual, routine, and cognitive 
jobs in 2020 in Korea. Manual jobs have a higher proportion of temporary and daily 
workers than other jobs (45% vs. 15% or 10%), and the share of low-educated (up 
to high school) workers is also higher than in the other cases (78% vs. 56% or 13%). 
Meanwhile, more elderly people (over age 60) work manual jobs than in other cases 
(31% vs. 18% or 6%), meaning means that the reduced demand for manual workers 
due to the pandemic will burden mostly socio-economically vulnerable workers, 
which calls for policies supporting vulnerable groups in the labor market. 

 
VI. Conclusion 

  
I study how COVID-19 affected the labor market through the lens of a general 

equilibrium model with multiple industries and occupations. I calibrate the model 
with Korean data and identify industrial and occupational COVID-19 shocks that 
derive employment dynamics in 2020 and 2021, when COVID-19 hit the Korean 
labor market. 

I find that COVID-19 shocks correlate significantly with both infection risk and 
ease of work-from-home by occupation and industry. As the pandemic progressed, 
however, the correlation with infection risk weakened, whereas the correlation with 
the easiness of work-from-home strengthened. Moreover, the relationship is more 
robust in the occupational dimension than in the industrial dimension. 

Based on this finding, I investigate how much, and in which direction, labor 
market structure would be affected if future technological changes accelerated the 
replacement of contact-intensive tasks (i.e., tasks that cannot be done at home). The 
simulation results show that the upward trend in manual workers’ employment share 
will shift to a declining trend due to the pandemic. This result stands in contrast with 
the earlier trend of job polarization in which only routine workers showed a declining 
employment share. The analysis suggests that whether or not a job requires contact-
intensiveness can play an essential role in shaping the future labor market structure; 
moreover, if it occurs, such a change calls for policies that support socio-
economically vulnerable groups, distributed mainly in manual jobs.
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APPENDIX 
 
 

A. Detailed Parameterization 
 

1. Classifications of Industry and Occupation 
 
The classification of industries is mainly based on the classification of national 

accounts by economic activity; it is subsequently linked to the KSIC. I exclude 
agriculture, forestry and fishing and the public. Occupational classification is based 
on the KSOC, and I also exclude skilled workers in agriculture, forestry and 
fisheries, as in these cases it is difficult to connect with the data on infection risk and 
the work-from-home index later. Table A1 compares the classification in the model 
and the data. 

 
TABLE A1—CLASSIFICATION OF INDUSTRY AND OCCUPATION 

Industry 𝒊 KSIC Economic Activities (NA) 

1 C Manufacturing 

2 D, E Electricity, gas and water supply 

3 F Construction 

4 G, I Wholesale and retail trade, accommodation and food services 

5 H Transportation and storage 

6 K Finance and insurance 

7 L Real estate 

8 J Information and communication 

9 N Business support services 

10 P Education 

11 Q Human health and social work 

12 R, S Cultural and other services 

13 M Professional, scientific and technical services 

Occupation 𝒋 KSOC Name 

1 1 Managers 

2 2 Professionals and related workers 

3 3 Clerks 

4 4 Service workers 

5 5 Sales workers 

6 7 Craft and related trades workers 

7 8 Equipment, machine operating and assembling workers 

8 9 Elementary workers 

Source: KSIC, KSOC, National Accounts.  



24 KDI Journal of Economic Policy MAY 2022 

2. Estimation of production function parameters 
 
From the equilibrium condition in equation (4), we have the following relationship: 

1 1log log log ,i i i i

I I I I

pY Y
p Y Y

 
  


   

I estimate the above equation by the iterated feasible generalized non-linear least 
squares (IFGNLS) method following Herrendorf, Rogers, and Valentinyi (2013). 
The sample period is from 2005 to 2019, and the nominal and the real value added 
by economic activity from the National Accounts correspond to i ip Y   and iY  , 
respectively. The estimation results are in Table A2. 

  
TABLE A2—ESTIMATION RESULTS: FINAL PRODUCTION 

Parameter Estimates 
 0.503 (0.002) 𝛾1 0.076 (0.001) 𝛾2 0.075 (0.002) 𝛾3 0.080 (0.001) 𝛾4 0.079 (0.000) 𝛾5 0.071 (0.001) 𝛾6 0.072 (0.001) 𝛾7 0.071 (0.001) 𝛾8 0.079 (0.000) 𝛾9 0.077 (0.000) 𝛾10 0.080 (0.000) 𝛾11 0.078 (0.000) 𝛾12 0.081 (0.001) 𝛾13 0.082 (0.001) 

AIC -980.79 

Note: Standard errors in parenthesis. 

Source: Author’s calculations. 

 
3. Calibration 

 
The elasticity of substitution between occupations ( ) governs how employment 

responds to a change in occupation-specific productivity ( jM ). I set the elasticity of 
substitution between occupations to 0.65, an average value of estimates in previous 
studies (Aum, Lee, and Shin, 2018; Aum, 2020; Lee and Shin, 2017; Duernecker and 
Herrendorf, 2020). 

Other parameters have been identified through the method of moments so that the 
data and endogenous variables of the model are similar in 2019. I calibrate the values 
of ij   to match employment by industry and by occupation; in all cases i  
matches labor income shares by industry and iA  matches capital stock by industry 
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as well as the aggregate level of output, in the year 2019. Because the model does 
not have aggregate shocks to generate aggregate fluctuations, it takes any variations 
in the aggregate variable exogenously. Therefore, I normalize total employment in 
the year 2019 to one. 

To be specific, the detailed procedure for the calibration is as follows. 
 
1) Normalize ,2019 1jM   for all j . 

2) Set an arbitrary value of ,2019IA . 

3) Find ij  from equation (9), ,2019 1jM  , and employment by occupation and 
industry in 2019; that is, ,2019 ,2019/ij ij iL L  . 

4) From equation (10), we have  
1

1
,2019i ijjV    . 

5) Determine I  from ,20191 Ilabor share  in the data. Then, 
,2019 ,20191 / [1 (1 ) / ( )]i I I I ik k      from equation (11). 

6) The industry-specific productivity ,2019iA  is then 

1
(1 )( 1) ( 1) 1

,2019 ,2019 ,2019
,2019 ,2019( 1)(1 )( 1)

,2019 ,2019,2019

i i

II

I i ii i
i I

i I I II

L V k
A A

L kV

     

   

 
 

    

  

         
                       


  

from equation (12). 

7) Iterate over ,2019IA  until the aggregate output in the model is equal to the data. 

In our model, the time-varying exogenous variables are occupation-specific 
productivity jM   and industry-specific productivity iA   as well as aggregate 
variables. To have changes in the values of jM   and iA   corresponding to 
structural changes in the labor market before the pandemic, we identify the best 
matches of ,2010jM  and ,2010iA  to the observed changes in employment by industry 
and occupation between 2010 and 2019. 

Specifically, from equation (9), 

,2010 1 ,2010

1,20101,2010

,j i ij

ij i

M L
LM






  

for all (1, , )i I   . Denoting  ,2010 8 ,2010 8,2010/i data data
j i ij ij iMr v L L  , I establish the 

occupation specific productivity in 2010 via  

,2010 ,2010 ,2010

,20108,2010

,
data i

j ij ji
data
iji

M L Mr
LM







  

with 8,2010 1M  . 
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Lastly, the ,2010iA  values are obtained using the equation 

1
(1 )( 1) ( 1) 1

,2010 ,2010 ,2010
,2010 ,2010( 1)(1 )( 1)

,2010 ,2010,2010

,
i i

II

I i ii i
i I

i I I II

L V k
A A

L kV

     

   

 
 

    

  

         
                       


  

where ,2010IA  is set to match the aggregate output in the model and that in the data in 
2010.  

Given the calibrated values of i , we can compute the value of the rate of return 
on capital ( R ) in the model. The rate of return on capital implies that 0.987  , 
with a depreciation rate (  ) of 0.05, which is the consumption of fixed capital 
divided by the net capital stock in 2019 in the Korean National Accounts. 

Table A3 summarizes the calibrated parameter values. 
 

TABLE A3—CALIBRATED PARAMETERS 

Occupation intensity within industry (𝝂𝒊𝒋) 
Industry 

Occupation 
1 2 3 4 5 6 7 8 

1 0.022 0.114 0.218 0.004 0.027 0.162 0.350  0.103  
2 0.017 0.123 0.269 0.008 0.004 0.067 0.354  0.158  
3 0.036 0.083 0.122 0.001 0.010 0.496 0.084  0.168  
4 0.008 0.042 0.113 0.263 0.407 0.025 0.013  0.128  
5 0.008 0.025 0.151 0.011 0.009 0.029 0.603  0.165  
6 0.020 0.603 0.253 0.002 0.021 0.044 0.006  0.050  
7 0.054 0.099 0.520 0.003 0.310 0.001 0.004  0.010  
8 0.020 0.367 0.274 0.002 0.018 0.031 0.060  0.227  
9 0.014 0.047 0.219 0.075 0.065 0.064 0.073  0.442  
10 0.023 0.741 0.120 0.056 0.000 0.002 0.014  0.043  
11 0.005 0.546 0.091 0.219 0.001 0.002 0.016  0.120  
12 0.003 0.196 0.104 0.346 0.029 0.158 0.036  0.127  
13 0.018 0.569 0.337 0.008 0.018 0.014 0.020  0.017  

Industrial capital income share and industry-specific productivity 
Industry 𝛼௜ 𝐴௜,ଶ଴ଵ଴ 𝐴௜,ଶ଴ଵଽ 

1 0.613  0.057 0.064 
2 0.895  1.627 1.087 
3 0.121  3.084 2.702 
4 0.155  0.356 0.277 
5 0.618  0.491 0.530 
6 0.591  2.283 1.811 
7 0.409  4.525 5.612 
8 0.947  0.037 0.032 
9 0.134  6.411 5.984 
10 0.333  1.307 1.696 
11 0.211  4.712 1.746 
12 0.287  2.502 2.462 
13 0.313  6.231 5.176 
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TABLE A3—CALIBRATED PARAMETERS (CONT’D) 

Occupation-specific productivity 

 
Occupation 

1 2 3 4 5 6 7 8 𝑀௝,ଶ଴ଵ଴ 0.271 0.965 1.321 0.715 0.354 0.582 0.876  1.000  𝑀௝,ଶ଴ଵଽ 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000  

Source: Author’s calculations. 
 
4. Data Construction 
 
The data for the output, capital, and labor income shares are obtained from the 

value added by economic activity (Tables 10.2.1.3, 10.2.1.4), the net capital stock 
(Tables 14.7.1, 14.7.2), employee compensation (Table 10.3.1.2) by industry, and the 
operational surplus of households (Table 10.4.2) in the Economic Statistics System 
(ECOS) of the Bank of Korea. In particular, I compute the labor income shares by 
industry from the compensation of employees divided by value added net of 
operational surplus of households by industry. Because the Bank of Korea provides 
data on the operational surplus of households at the aggregate level only, I distribute 
this data to each industry based on the share of self-employed in each industry. 

The data for employment come from the Economically Active Population Survey 
(EAPS) from MDIS (Microdata Integrated Service). Employment by industry and 
occupation were based on the average number of employed persons from March to 
August of 2019 in the Economically Active Population Survey (EAPS). I restrict 
employment data from March to August because the COVID-19 shock started in 
March of 2020 and the microdata from the 2021 EAPS were available only until 
August at the time of the analysis. Therefore, employment in 2010, 2019, 2020, and 
2021 in the model correspond to the average number of employed persons from 
March to August of 2010, 2019, 2020, and 2021, respectively. 

Finally, the aggregate level of output comes from the Gross Domestic Product, 
Table 10.2.2.4, in ECOS. 
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