과제정보
This study was carried out with the support of Cooperative Research program for Agricultural Science & Technology Development (Project No. PJ01487811) Rural Development Administration, Republic of Korea.
참고문헌
- Abd El-Gawad, H. G. and Bondok, A. M. 2015. Response of tomato plants to salicylic acid and chitosan under infection with Tomato mosaic virus. Am. Euras. J. Agric. Environ. Sci. 15: 1520-1529.
- Anfoka, G., Moshe, A., Fridman, L., Amrani, L., Rotem, O., Kolot, M. et al. 2016. Tomato yellow leaf curl virus infection mitigates the heat stress response of plants grown at high temperatures. Sci. Rep. 6: 19715. https://doi.org/10.1038/srep19715
- Brown, J. K., Zerbini, F. M., Navas-Castillo, J., Moriones, E., Ramos-Sobrinho, R., Silva, J. C. et al. 2015. Revision of Begomovirus taxonomy based on pairwise sequence comparisons. Arch. Virol. 160: 1593-1619. https://doi.org/10.1007/s00705-015-2398-y
- Butterbach, P., Verlaan, M. G., Dullemans, A., Lohuis, D., Visser, R. G., Bai, Y. et al. 2014. Tomato yellow leaf curl virus resistance by Ty-1 involves increased cytosine methylation of viral genomes and is compromised by cucumber mosaic virus infection. Proc. Natl. Acad. Sci. U. S. A. 111: 12942-12947. https://doi.org/10.1073/pnas.1400894111
- Calil, I. P. and Fontes, E. P. B. 2017. Plant immunity against viruses: antiviral immune receptors in focus. Ann. Bot. 119: 711-723. https://doi.org/10.1093/aob/mcw200
- Choi, S. K., Choi, H. S., Yang, E. Y., Cho, I. S., Cho, J. D. and Chung, B. N. 2013. Construction of Tomato yellow leaf curl virus clones for resistance assessment in tomato plants. Korean J. Hortic. Sci. Technol. 31: 246-254. (In Korean) https://doi.org/10.7235/hort.2013.12169
- Cohen, S. and Harpaz, I. 1964. Periodic, rather than continual acquisition of a new tomato virus by its vector, the tobacco whitefly (Bemisia tabaci Gennadius). Entomol. Exp. Appl. 7: 155-166. https://doi.org/10.1111/j.1570-7458.1964.tb02435.x
- Cohen, S. and Lapidot, M. 2007. Appearance and expansion of TYLCV: a historical point of view. In: Tomato yellow leaf curl virus Disease: Management, Molecular Biology, Breeding for Resistance, ed. by H. Czosnek, pp. 3-12. Springer, Dordrecht, The Netherlands.
- Corrales-Gutierrez, M., Medina-Puche, L., Yu, Y., Wang, L., Ding, X., Luna, A. P. et al. 2020. The C4 protein from the geminivirus Tomato yellow leaf curl virus confers drought tolerance in Arabidopsis through an ABA-independent mechanism. Plant Biotechnol. J. 18: 1121-1123. https://doi.org/10.1111/pbi.13280
- Doares, S. H., Syrovets, T., Weiler, E. W. and Ryan, C. A. 1995. Oligogalacturonides and chitosan activate plant defensive genes through the octadecanoid pathway. Proc. Natl. Acad. Sci. U. S. A. 92: 4095-4098. https://doi.org/10.1073/pnas.92.10.4095
- Esmailzadeh, M., Soleimani, M. J. and Rouhani, H. 2008. Exogenous applications of salicylic acid for inducing systematic acquired resistance against tomato stem canker disease. J. Biol. Sci. 8: 1039-1044. https://doi.org/10.3923/jbs.2008.1039.1044
- Faoro, F. and Gozzo, F. 2015. Is modulating virus virulence by induced systemic resistance realistic? Plant Sci. 234: 1-13. https://doi.org/10.1016/j.plantsci.2015.01.011
- Fauquet, C. M., Briddon, R. W., Brown, J. K., Moriones, E., Stanley, J., Zerbini, M. et al. 2008. Geminivirus strain demarcation and nomenclature. Arch. Virol. 153: 783-821. https://doi.org/10.1007/s00705-008-0037-6
- Huot, B., Yao, J., Montgomery, B. L. and He, S. Y. 2014. Growth-defense tradeoffs in plants: a balancing act to optimize fitness. Mol. Plant. 7: 1267-1287. https://doi.org/10.1093/mp/ssu049
- Iftikhar, Y., Mubeen, M., Sajid, A., Zeshan, M. A., Shakeel, Q., Abbas, A. et al. 2021. Effects of tomato leaf curl virus on growth and yield parameters of tomato Crop. Arab J. Plant Prot. 39: 79-83. https://doi.org/10.22268/AJPP-039.1.079083
- Iriti, M. and Varoni, E. M. 2015. Chitosan-induced antiviral activity and innate immunity in plants. Environ. Sci. Pollut. Res. 22: 2935-2944. https://doi.org/10.1007/s11356-014-3571-7
- Javaheri, M., Mashayekhi, K., Dadkhah, A. and Tavallaee, F. Z. 2012. Effects of salicylic acid on yield and quality characters of tomato fruit (Lycopersicum esculentum Mill.). Int. J. Agric. Crop Sci. 4: 1184-1187.
- Ji, Y., Schuster, D. J. and Scott, J. W. 2007. Ty-3, a Begomovirus resistance locus near the Tomato yellow leaf curl virus resistance locus Ty-1 on chromosome 6 of tomato. Mol. Breed. 20: 271-284. https://doi.org/10.1007/s11032-007-9089-7
- Jung, J., Kim, H. J., Lee, J. M., Oh, C. S., Lee, H.-J. and Yeam, I. 2015. Gene-based molecular marker system for multiple disease resistances in tomato against Tomato yellow leaf curl virus, late blight, and verticillium wilt. Euphytica 205: 599-613. https://doi.org/10.1007/s10681-015-1442-z
- Karasov, T. L., Chae, E., Herman, J. J. and Bergelson, J. 2017. Mechanisms to mitigate the trade-off between growth and defense. Plant Cell 29: 666-680. https://doi.org/10.1105/tpc.16.00931
- Khan, A., Kamran, M., Imran, M., Al-Harrasi, A., Al-Rawahi, A., Al-Amri, I. et al. 2019. Silicon and salicylic acid confer high-pH stress tolerance in tomato seedlings. Sci. Rep. 9: 19788. https://doi.org/10.1038/s41598-019-55651-4
- Khan, M. I. R., Fatma, M., Per, T. S., Anjum, N. A. and Khan, N. A. 2015. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Front. Plant Sci. 6: 462.
- Kil, E.-J., Byun, H.-S., Kim, S., Kim, J., Park, J., Cho, S. et al. 2014. Sweet pepper confirmed as a reservoir host for Tomato yellow leaf curl virus by both agro-inoculation and whitefly-mediated inoculation. Arch. Virol. 159: 2387-2395. https://doi.org/10.1007/s00705-014-2072-9
- Kim, C. S., Lee, K. S., Choi, H. S., Lee, K. Y., Lee, S. C., Kim, J. K. et al. 2012. Weed host for propagation of the Bemisia tabaci infected with TYLCV and its TYLCV infection. Korean J. Weed Sci. 32: 247-248. (In Korean)
- Kim, H.-Y., Lee, Y.-H., Kim, J.-H. and Kim, Y.-H. 2008. Comparison on the capability of four predatory mites to prey on the eggs of Bemisia tabaci (Hemiptera: Aleyrodidae). Korean J. Appl. Entomol. 47: 429-433. (In Korean) https://doi.org/10.5656/KSAE.2008.47.4.429
- Kim, W.-I., Kim, K.-H., Kim, Y.-B., Lee, H.-S., Shon, G.-M. and Park, Y.- H. 2013. Selection and characterization of horticultural traits of Tomato leaf curl virus (TYLCV)-resistant tomato cultivars. Korean J. Hortic. Sci. Technol. 31: 328-336. (In Korean) https://doi.org/10.7235/hort.2013.12186
- Koo, Y. M., Heo, A. Y. and Choi, H. W. 2020. Salicylic acid as a safe plant protector and growth regulator. Plant Pathol. J. 36: 1-10. https://doi.org/10.5423/PPJ.RW.12.2019.0295
- Kovacik, J., Gruz, J., Backor, M., Strnad, M. and Repcak, M. 2009. Salicylic acid-induced changes to growth and phenolic metabolism in Matricaria chamomilla plants. Plant Cell Rep. 28: 135-143. https://doi.org/10.1007/s00299-008-0627-5
- Lapidot, M., Friedmann, M., Pilowsky, M., Ben-Joseph, R. and Cohen, S. 2001. Effect of host plant resistance to Tomato yellow leaf curl virus (TYLCV) on virus acquisition and transmission by its whitefly vector. Phytopathology 91: 1209-1213. https://doi.org/10.1094/PHYTO.2001.91.12.1209
- Lapidot, M., Paran, I., Ben-Joseph, R., Ben-Harush, S., Pilowsky, M., Cohen, S. et al. 1997. Tolerance to cucumber mosaic virus in pepper: development of advanced breeding lines and evaluation of virus level. Plant Dis. 81: 185-188. https://doi.org/10.1094/pdis.1997.81.2.185
- Lee, M.-L., Ahn, S.-B. and Cho, W.-S. 2000. Morphological characteristics of Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) and discrimination of their biotypes in Korea by DNA markers. Korean J. Appl. Entomol. 39: 5-12. (In Korean)
- Lee, Y, J., Kim M, K., Choi, H. S., Kwak, H. R., Seo, J. G., Lee, J. S. et al. 2013. Primer set for multiple detection tomato viruses that transmitted by whiteflies, and method for detecting said viruses using the same. Korea Patent No. 10-2013-0140576. (In Korean)
- Lee, Y.-S., Kim, J.-Y., Hong, S.-S., Park, J. and Park, H.-H. 2012. Occurrence of sweet-potato whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae) and its response to insecticide in Gyeonggi area. Korean J. Appl. Entomol. 51: 377-382. (In Korean) https://doi.org/10.5656/KSAE.2012.09.0.051
- Lefeuvre, P., Martin, D. P., Harkins, G., Lemey, P., Gray, A. J. A., Meredith, S. et al. 2010. The spread of Tomato yellow leaf curl virus from the Middle East to the world. PLoS Pathog. 6: e1001164. https://doi.org/10.1371/journal.ppat.1001164
- Legarrea, S., Barman, A., Marchant, W., Diffie, S. and Srinivasan, R. 2015. Temporal effects of a Begomovirus infection and host plant resistance on the preference and development of an insect vector, Bemisia tabaci, and implications for epidemics. PLoS ONE 10: e0142114. https://doi.org/10.1371/journal.pone.0142114
- Li, T., Huang, Y., Xu, Z.-S., Wang, F. and Xiong, A.-S. 2019. Salicylic acid-induced differential resistance to the Tomato yellow leaf curl virus among resistant and susceptible tomato cultivars. BMC Plant Biol. 19: 173. https://doi.org/10.1186/s12870-019-1784-0
- Li, Y., Muhammad, T., Wang, Y., Zhang, D., Crabbe, M. J. C. and Liang, Y. 2018. Salicylic acid collaborates with gene silencing to tomato defense against Tomato yellow leaf curl virus (TYLCV). Pak. J. Bot. 50: 2041-2054.
- Li, Y., Qin, L., Zhao, J., Muhammad, T., Cao, H., Li, H. et al. 2017. SlMAPK3 enhances tolerance to Tomato yellow leaf curl virus (TYLCV) by regulating salicylic acid and jasmonic acid signaling in tomato (Solanum lycopersicum). PLoS ONE 12: e0172466. https://doi.org/10.1371/journal.pone.0172466
- Mishra, R., Shteinberg, M., Shkolnik, D., Anfoka, G., Czosnek, H. and Gorovits, R. 2022. Interplay between abiotic (drought) and biotic (virus) stresses in tomato plants. Mol. Plant Pathol. 22: 475-488.
- Mishra, S., Jagadeesh, K. S., Krishnaraj, P. U. and Prem, S. 2014. Biocontrol of tomato leaf curl virus (ToLCV) in tomato with chitosan supplemented formulations of Pseudomonas sp. under field conditions s. Aust. J. Crop Sci. 8: 347-355.
- Moriones, E. and Navas-Castillo, J. 2000. Tomato yellow leaf curl virus, an emerging virus complex causing epidemics worldwide. Virus Res. 71: 123-134. https://doi.org/10.1016/S0168-1702(00)00193-3
- Moriones, E., Navas-Castillo, J. and Diaz-Pendon, J. A. 2011. Emergence of Begomovirus diseases. In: Recent Advances in Plant Virology, eds. by C. Caranta, M. A. Aranda, M. Tepfer and J. J. Lopez-Moya, pp. 301-320. Caister Academic Press, Norfolk, UK.
- Nakhla, M. K. and Maxwell, D. P. 1998. Epidemiology and management of tomato yellow leaf curl disease. In: Plant Virus Disease Control, eds. by A. Hadidi, R. K. Khetarpal and H. Koganezawa, pp. 565-583. APS Press, St. Paul, MN, USA.
- Pasternak, T., Groot, E. P., Kazantsev, F. V., Teale, W., Omelyanchuk, N., Kovrizhnykh, V. et al. 2019. Salicylic acid affects root meristem patterning via auxin distribution in a concentration-dependent manner. Plant Physiol. 180: 1725-1739. https://doi.org/10.1104/pp.19.00130
- Polston, J. E. and Anderson, P. K. 1997. The emergence of whitefly-transmitted geminviruses in tomato in the western hemisphere. Plant Dis. 81: 1358-1369. https://doi.org/10.1094/PDIS.1997.81.12.1358
- Pospieszny, H., Chirkov, S. and Atabekov, J. 1991. Induction of antiviral resistance in plants by chitosan. Plant Sci. 79: 63-68. https://doi.org/10.1016/0168-9452(91)90070-O
- Pospieszny, H. 1997. Antiviroid activity of chitosan. Crop Prot. 16: 105-106. https://doi.org/10.1016/S0261-2194(96)00077-4
- Rashid, M. H., Hossain, I., Hannan, A., Uddin, S. A. and Hossain, M. A. 2008. Effect of different dates of planting time on prevalence of Tomato yellow leaf curl virus and whitefly of tomato. J. Soil Nat. 2: 1-6.
- Rendina, N., Nuzzaci, M., Scopa, A., Cuypers, A. and Sofo, A. 2019. Chitosan-elicited defense responses in Cucumber mosaic virus (CMV)-infected tomato plants. J. Plant Physiol. 234-235: 9-17. https://doi.org/10.1016/j.jplph.2019.01.003
- Rivas-San Vicente, M. and Plasencia, J. 2011. Salicylic acid beyond defence: its role in plant growth and development. J. Exp. Bot. 62: 3321-3338. https://doi.org/10.1093/jxb/err031
- Ryals, J. A., Neuenschwander, U. H., Willits, M. G., Molina, A., Steiner, H. Y. and Hunt, M. D. 1996. Systemic acquired resistance. Plant Cell 8: 1809-1819. https://doi.org/10.1105/tpc.8.10.1809
- Scott, J. W. 2007. Breeding for resistance to viral pathogens. In: Gentic Improvement of Solanaceous Crops, Vol. 2: Tomato, eds. by M. K. Razdan and A. K. Mattoo, pp. 457-485. CRC Press, Enfield, NH, USA.
- Seo, J.-K., Kim, M.-K., Kwak, H.-R., Choi, H.-S., Nam, M., Choe, J. et al. 2018. Molecular dissection of distinct symptoms induced by tomato chlorosis virus and Tomato yellow leaf curl virus based on comparative transcriptome analysis. Virology 516: 1-20. https://doi.org/10.1016/j.virol.2018.01.001
- Shang, J., Xi, D.-H., Xu, F., Wang, S.-D., Cao, S., Xu, M.-Y. et al. 2011. A broad-spectrum, efficient and nontransgenic approach to control plant viruses by application of salicylic acid and jasmonic acid. Planta 233: 299-308. https://doi.org/10.1007/s00425-010-1308-5
- Shteinberg, M., Mishra, R., Anfoka, G., Altaleb, M., Brotman, Y., Moshelion, M. et al. 2021. Tomato yellow leaf curl virus (TYLCV) promotes plant tolerance to drought. Cells 10: 2875. https://doi.org/10.3390/cells10112875
- Singh, A. K., Dwivedi, V., Rai, A., Pal, S., Reddy, S. G. E., Rao, D. K. V. et al. 2015. Virus-induced gene silencing of Withania somnifera squalene synthase negatively regulates sterol and defence-related genes resulting in reduced withanolides and biotic stress tolerance. Plant Biotechnol. J. 13: 1287-1299. https://doi.org/10.1111/pbi.12347
- Sun, W.-J., Lv, W.-J., Li, L.-N., Yin, G., Hang, X., Xue, Y. et al. 2016. Eugenol confers resistance to Tomato yellow leaf curl virus (TYLCV) by regulating the expression of SlPer1 in tomato plants. New Biotechnol. 33: 345-354. https://doi.org/10.1016/j.nbt.2016.01.001
- Tahmasebi, A., Zangeneh, M., Tahmasebi, A., Dizaji, A. and Habibi, M. K. 2011. Role of salicylic acid in resistance to plant viruses. Genet. Third Millenn. 8: 2203-2212. (In Persian)
- Tsai, W.-A., Weng, S.-H., Chen, M.-C., Lin, J.-S. and Tsai, W.-S. 2019. Priming of plant resistance to heat stress and tomato yellow leaf curl Thailand virus with plant-derived materials. Front. Plant Sci. 10: 906. https://doi.org/10.3389/fpls.2019.00906
- Verlaan, M. G., Hutton, S. F., Ibrahem, R. M., Kormelink, R., Visser, R. G. F., Scott, J. W. et al. 2013. The Tomato yellow leaf curl virus resistance genes Ty-1 and Ty-3 are allelic and code for DFDGD-class RNA-dependent RNA polymerases. PLoS Genet. 9: e1003399. https://doi.org/10.1371/journal.pgen.1003399
- Wang, C. and Fan, Y. 2014. Eugenol enhances the resistance of tomato against Tomato yellow leaf curl virus. J. Sci. Food Agric. 94: 677-682. https://doi.org/10.1002/jsfa.6304
- Yalpani, N., Leon, J., Lawton, M. A. and Raskin, I. 1993. Pathway of salicylic acid biosynthesis in healthy and virus-inoculated tobacco. Plant Physiol. 103: 315-321. https://doi.org/10.1104/pp.103.2.315
- Yang, X., Caro, M., Hutton, S. F., Scott, J. W., Guo, Y., Wang, X. et al. 2014. Fine mapping of the Tomato yellow leaf curl virus resistance gene Ty-2 on chromosome 11 of tomato. Mol. Breed. 34: 749-760. https://doi.org/10.1007/s11032-014-0072-9
- Zamir, D., Ekstein-Michelson, I., Zakay, Y., Navot, N., Zeidan, M., Sarfatti, M. et al. 1994. Mapping and introgression of a Tomato yellow leaf curl virus tolerance gene, Ty-1. Theor. Appl. Genet. 88: 141-146. https://doi.org/10.1007/bf00225889
- Zeshan, M. A., Khan, M. A., Ali, K. S. and Arshad, M. 2016. Phenotypic evaluation of tomato germplasm for the source of resistance against tomato leaf curl virus disease. J. Anim. Plant Sci. 26: 194-200.