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EXTENSION OF GRACE’S THEOREM TO BI-COMPLEX
POLYNOMIALS

ZAHID MANZOOR WANT* AND WALI MOHAMMAD SHAHT

ABSTRACT. In this paper, we prove some results concerning the zeros of Bi-complex poly-
nomials. These results as special cases include Grace’s theorem and related results.

1. Introduction and Historical Background

Let C = {2 : 2z = z +iy;2,y € Randi = /—1} be the set of complex numbers.
For z1,z, € C, the set BC of bi-complex numbers is defined as BC = {Z : Z = z +
Jz2; 21,20 € C}, where ij = ji = kandi® = j2 = —k* = —1. Here k is known as a
hyperbolic imaginary unit. Thus more precisely bi-complex numbers are complex numbers
with complex coefficients.

Addition and multiplication on BC is defined in the similar fashion as is defined on C
and it is easy to observe that the set BC forms a commutative ring. However due to the
presence of zero-divisors, BC is not a field. The set of zero-divisors in BC is given as:

O={z+jznecBC: 22+ =0} ={a(l+ij):acC}

For x1, 22,91,y € R, we have Z = 21 + jz9 = 21 + 129 + jy; + jiy2. Thus BC can be viewed
as a real vector space isomorphic to R* via the map x1 + ixo + jy1 + jive — (21, T2, Y1, Y2).

As (for reference see [3]) the structure of BC consists of two imaginary units and one
hyperbolic unit in it, therefore there are three possible conjugations on this structure:

1.: Z:= 2+ j% (the bar-conjugation);

2.: ZT:=2 — jz (the f-conjugation);

3. ZF = (7)T = 7t =7 — j7 (the *-conjugation).
One of the most important presentation of bi-complex numbers is the idempotent repre-
sentation. The bi-complex numbers e = HT”, el = 1_7” are linearly independent in the
linear space BC over C. From the simple calculations, it can be easily seen that e +ef = 1,
e—el =1ij,eel =0, e =ceand (eT)2 = ef. Also it can be easily verified that any bi-complex
number Z = z;+jz, can be uniquely written as Z = (21 —i2y)e+ (21 +izp)el and this unique
representation of the bi-complex numbers is known as their idempotent representation.
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If Z = 21+ jz = Cie + Ceel, then the norm function ||.|| : BC — R*, where R* denotes
the set of all non-negative real numbers, is defined as:
) 2 2 3
121 = (I + 1y = (IR0
From the idempotent representation of any bi-complex number Z = 2y + jzy as Z =
(21 —iz0)e + (21 +iz0)el, we get the idea of defining two spaces A = {2 — iz : 21, 2 € C}
and A = {2 +iz : 21, 25 € C}, known as auxiliary complex spaces. Though A and A contain
same elements as in C but these convenient notations are used for special representation of
elements in the sense that each Z = z; + jzp = (21 — izp)e + (21 + i22)el € BC associates
the points (21 —iz) € A and (21 +iz) € A. Also to each point (2, — 429, 21 +i23) € A x A,
there is a unique point in BC.
The cartesian set BC determined by X; C A and X5 C A is defined as

X% Xo = {21+ j20 €BC : 21 + jzy = wie + woel, (wy, wy) € X1 x Xy}
An open discus D(a;ry,ry) with centre a = aje + asel and radii r; > 0, 75 > 0 is defined as
D(a;r1,re) = B(ay,r1)x.B(az, )
= {wie + wee! € BC : lwy — a1| < 1, |we — as| < ro}

and a closed discus E(a; r1,T9) with centre a = are+asel and radii r; > 0, 7o > 0 is defined
as

D(a;r1,7m2) = Blay, )% B(az, )
= {wie + wee’ € BC : |wy — ay| < 1y, |wy — ag] < 7o}

Where B(z,r) and B(z,7) respectively represent open and closed ball with centre z and
radius r.

It is worth here to mention that D(a;r1,73), the product of two discs respectively of
radii r; and ro, geometrically represents a duocylinder or double cylinder in 4-dimensional
Euclidean space. This duocylinder or double cylinder in 4-dimensional Euclidean space is
analogous to a cylinder in 3- dimensional FEuclidean space, which is the cartesian product
of a disc with a line segment (for reference see [6]). If both r; > 0 and 5 > 0 are equal to
r, then the discus is called a BC — Disc and is denoted by D(a;r,r) = D(a;r).

A bi-complex polynomial of degree n is a function of the form

P(Z) =) AZ', Ay #0,
1=0

where A;, i = 0,1,2,...,n are bi-complex numbers and Z is a bi-complex variable. Now
if we write Z = 21 + jzo = Qe + (el and A; = aje + Biel for all i = 0,1,2,...,n, then
7' = (i"e + ('e! and we can re-write our polynomial in the idempotent representation as

n n

P(Z) =) (ai)e+ D _(BiGhe’ = fi(G)e + fa(G)el.

i=0 i=0
Now if we denote the sets of distinct zeros of f; and fo by S; and Ss, and if S denotes the
set of distinct zeros of the polynomial P, then

S = Sie + Spel.

Therefore the following three cases fully describe the structure of the null-set of the poly-
nomial P(Z) of degree n (for details see [3])
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1. If both polynomials f; and f, are of degree at least one, and if S; = {311,312, .31}
and Sy = {321,322, ---,32:}, then the set of distinct zeros of the polynomial P(z) is
given by

S:{Zs7t:517se+527tef:s:l,...,k,tzl....,l}.

2. If f; is identically zero, then S; = C and S = {321,322, - - -, 32:}, with { <n. There-
fore

S={Z, =X+ : NcCit=1...1}

Similarly, If fy is identically zero, then Sy = C and S1 = {311,312, --,31.}, With
k <n. Hence

S={Z,=sse+r:AcC,s=1....k}

3. If all the coefficients A; with the exception Ay = age + Bye’ are complex multiples of
e (respectively of ef), but By # 0 (respectively ag # 0), then polynomial P has no
ZEros.

In this paper, we extend some results concerning complex polynomials to Bi-complex poly-
nomials. Before discussing these results, we first recall the following basic definitions. Let P,
be the class of complex polynomials of degree n. Let f,g € P, be such that for A;, B; € C,
j=0,1,2,....n, f(z) = Z?:o (?)Ajzj and g(z) = Z;‘l:o (?)szj, A, B, # 0, then these
two polynomials are said to be Apolar, if their coefficients satisfy the equation

n n n
Clearly, for a given polynomial there are number of polynomials apolar to it. Also the
Hadamard product of these complex polynomials f and ¢ is defined as

0= (e = 3 (1) 4

Jj=0

1.1. Apolarity of Bi-complex polynomials. Following the approach of complex poly-
nomials, we can say that two bi-complex polynomials

F(Z) = 2”: (Z)Akzk = <Zn: (Z) 04ka>€ + <Zn: (Z)ﬁk(g)a = fi(G)e + fo(G)e!

c(z)-y (Z)Bkzkz( n (Z)wkcf)w( n (Z)ékcé“)e*=gl<<1>e+gz<<2>e*,
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where A; = e + Biel, By = vie + d;ef for i =1,2,...,n and Z = (e + (ief, are apolar, if

AOBn - (T) Aan_l + (g) AQBn_Q — ... —|— (—1)nAnB0

= (e + BOGT)('yne + 5nef) - (n

1) (e + 516T)(%—16 + 5n—16T)+

(Z> (aze + Bael) (Ynose + Gnzel) — ...+ (=1)"(ane + Bue’) (v0e + doe')
= (Oéo’Yn - <711> 1 Yn—1 + (Z) QgYp—2 — ... T (—1)n04n’70)€

+ (Bobn — (T) B10n-1 + (Z) P20 — ...+ (—1)7157150)6T

=0.
That is, if
(1) QoYn — (T) Q1Yn—-1 + (Z) a2Yn—2 — ...+ (=1)"any =0
and
(2) 50571 - <§L) 51571—1 + <;L) /82571—2 e (_1>nﬁn50 =0.

From (1) and (2), it follows that two bi-complex polynomials

F(Z) = no () 4z = (; (F)esct)e s (; (3)uct)el = e + e

k=

6 =3 (3)mz = (3 () uct)e+ (3 (1)t)e = ai@e + tcaet

k=0
are Apolar, if the coefficients of their corresponding idempotent parts satisfy the following
equations simultaneously

n n "
aoYn = | 4 )1 + o |2 Vn—2 = +(—1)"any =0

and
60571 - (T) 61571—1 + <Z) 52571—2 — ...+ (_1>nﬁn50 =0.

In other words, two bi-complex polynomials F(Z) = f1((1)e+ f2(G)el and G(Z) = g1(¢1)e+
g2(Cz)et are apolar if their corresponding idempotent parts are apolar simultaneously.

1.2. Hadamard product of Bi-complex polynomials. Following the approach of com-
plex functions, we define the Hadamard product of two bi-complex polynomials

F(Z) = kZ:; <Z>Akzk = <§ (Z) CYka>€ + (kz: (Z)ﬂk(§>€T = fi(¢e + fa(Go)e!

6(2)=y (Z) Bz = (Y (Z) wt)e+ (30 (Z) 015 ) el = g1(G)e + galGe!

k=0 k=0
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H(Z)

F(Z)xG(Z)

- (T,Z)AijZj.
— \J

J

Which further gives after substituting A; = aze + Biel, B; = e + del for i = 1,2,...,n
and Z = (e + (el

(”) (e + Bt (vpe + 8,6 (e + Gty

( ) aje + Bieh) (e + 8¢ (Cle + (el
(]

) O‘J’VJCl e+ (8505 <2> }

I
/N

(?) aﬂij)é’ + (i (?) ﬁj@@) ef

Jj=0 J=

= (fi*xg)(C)e + (f2 * g2)(C2)el
= hi(C1)e + ha(Co)e

Thus the covolution or Hadamard product of two bi-complex polynomials F'(Z) = f1((1)e+
f2(G)el and G(Z) = g1(G1)e + go(Co)elis defined by
H(Z)=F(Z)«G(Z)
(3) = hi(G)e + ha(G)e!
where hi(G) = (f1 * 91)(G) and ha(G2) = (f2 * 92)(C2)-

2. Results and Discussion

To prove our results, we need the following lemmas due to Price [3].

LEMMA 2.1. Let X = Xje+ Xpel := {(ie+ Gel : ¢ € X1, ( € Xy} be a domain in BC.
A bi-complex function F = fie + fyel : X — BC is holomorphic if and only if both the
component functions f; and fo are holomorphic in X; and X, respectively.

LEMMA 2.2. Let F be a bi-complex holomorphic function defined in a domain X =
Xie + Xoel := {Cle+ (el : ¢ € X1,G € Xo} such that F(Z) = f1(G)e + f2(()el, for all
7 = (1e+ (el € X. Then, F(Z) has a zero in X if and only if f1(¢;) and f((;) both have
a zero at (; in X and at (5 in Xy respectively.

The main aim of writing this paper is to extend Grace’s theorem [1] and related results
proved for complex polynomials to bi-complex polynomials. We first prove the following
result, which extends Grace’s theorem to bi-complex polynomials.

THEOREM 2.3. If F(Z) and G(Z) are apolar bi-complex polynomials and if any one of
them has all its zeros in a closed discus D(c;ry,1s), then the other will have atleast one
zero in D.
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Proof. Let the two bi-complex polynomials in their idempotent representation be

F(Z) = fi(G)e+ fa(G)el
and
G(Z) = g1(G1)e + ga(Ca)e.
Assume that the bi-complex polynomial F'(Z) has all its zeros in discus

D(c;ry,19),

where ¢ = cje + cpel. This implies by Lemma 2.2 that f(¢;) and f»(¢;) have all their zeros
in

Xlz{C1€AI |Cl—01| grl}C(C
and

Xo={GeA:|—c|<r}cC
respectively. Now it is given that F(Z) and G(Z) are apolar bi-complex polynomials.
Therefore the polynomial f;((;) is apolar to polynomial g;(¢;) and the polynomial f5((2)
is apolar to the polynomial go((3) simultaneously. Hence by Grace’s theorem for complex
polynomials, we conclude that atleast one zero of ¢;((;) and atleast one zero of ¢5((s) lie
in Xy and X respectively. Hence by lemma 2.2, bi-complex polynomial

G(Z) = g1(Cr)e + ga(Co)e!
has at least one zero in o
Xie+ Xgel = D(c;ry, 7).
This completes the proof of the Theorem. n

Next we prove the following result, which extends a result due to Szegé [4] to bi-complex
polynomials.

THEOREM 2.4. From the two bi-complex polynomials F/(z) := 37" (';L) A;Z7 and G(z) =
S (’;) B;Z7, let us form the composite bi-complex polynomial

_ H(Z) = i (Z) A;B; 77

j=0

If all the zeros of F(z) lie in a closed discus D(c;ry,79), then every zero w = wye + wye' of
H(Z) has the form w = —p1, where . = pie + poel is a suitably chosen point in D and
¥ = V1e + Vqe’ is a zero of G(Z).

Proof. Let the two bi-complex polynomials in their idempotent representation be
F(Z) = fi&)e + fo(G)e!
and

G(Z) = g1(Cr)e + ga(Co)el.
Now, we have the composite bi-complex polynomial as

H(Z)=F(Z)xG(Z)
n n .
A:B. 77
2 () am7
hi(Ge + ha(Go)ef,
where hy(¢1) = (f1 * g1)((1) and ho(() = (f2 * g2)(). Since ¥ = Y1e + ¥qel is a zero of
G(Z) = g1(G)e + g2(Ga)e,
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therefore 1, and ¥, are the zeros of g;(¢;) and go((y) respectively. Also p = pye + pel is a
suitably chosen point in D, therefore
M1€X1:{51€A3|Cl—61|§7“1}c(c

and B
po € Xo={G €A |G —c <my} CC.

Hence with the help of Szeg0’s theorem [4] for complex polynomials, it follows that all the
zeros of

hi(G1) = (f1 * 91)(C1)

and

hQ(CQ) = (fz * 92)((2)

are respectively of the forms wy, = —p1v; and wy = —p9¥s. This implies from Lemma 2.2
that all the zeros of the bi-complex polynomial

H(Z) = hy(Ci)e + ha(Go)e!
are of the form
w = wi€e + w26T
= (—pmh)e + (—path)e’

= —{M1791€ + ,U2'1926T}
= —ud.

]

We also prove the following result, which extends a result due to Cohn and Egervary ( [2],
p. 66) to bi-complex polynomials.

THEOREM 2.5. If all the zeros of a bi-complex polynomial F(Z) = Z?:o (?)A]Zj
lie in open discus D(c;r1,12) and if all the zeros of the bi-complex polynomial G(Z) :=
Z?:o (?) B;Z7 lie in closed discus D(c; s1, $2), then all the zeros of the composite bi-complex

polynomial
n n A
H(Z) = VA.B.; 77
2) Z<]) B,

lie in open discus D(c;1181,7252).
Proof. Here the two bi-complex polynomials in their idempotent representation are
F(Z) = filG)e+ fa(G)el
and

G(Z) = g1(¢1)e + g2(G)e’
Also, we have the composite bi-complex polynomial as

H(Z) = F(Z) « G(Z)

5:()one

J=0

hi(Cr)e + ha(G)el,
where hy(¢1) = (fi1 * 91)(G1) and ho(Co) = (f2 * g2)(G). Now, if 9 = ¥ye + el is a zero of

G(Z) = gi1(C1)e + g2(C)el
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and p1 = e+ pze’ is a suitably chosen point in D(c;ry, r5), then from the proof of theorem
2.4, we have that every zero of

hi(G) = (f1+91)(G)

and
ha(Ca) = (f2 * g2)(C2)
are respectively of the forms w; = —p19, and wy = —puovy. This implies
jwi| = | — padh|
= [pa|0h]
<7181

Similarly |ws| < 7385. Thus we conclude that all the zeros of hy((;) and all the zeros of
ho(C2) lie in
Xi={GeA:|G—al<mns}CC
and
Xo={GEA:|{—cy <mysy} CC
respectively. Hence by lemma 2.2, bi-complex polynomial
H(Z) = hy(C)e + ha(Co)el
has all its zeros in
Xie + Xoel = D(c;r181,7982).
This completes the proof.
]

Finally we prove the following result, which extends a result due to Walsh [5] to bi-
complex polynomials.

THEOREM 2.6. From two bi-complex polynomials
F(Z):=) A7
j=0
and
j=0

of degree n, let us form the composite bi-complex polynomial as
H(z) =) (n— By ;F(Z) =) (n—j)lA, ;G'(2)

=0 =0

of degree n. if all the zeros of F(Z) lie in a discus D(c;r1,72), then all the zeros of H(Z)
has the form w = 9 + p, where ¥ is a zero of G(Z) and y is suitably chosen point in D.

Proof. From the hypothesis, we have

F(Z):= zn:AiZi and G(Z):= zn: B;Z".
=0 1=0

Therefore,

F (Z) _ZmAZZ y k—1,2,...,n
i=k
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and

n

k _ i! (i—k) _
GHz)=> o k)!BZ-Z L k=1,2,...n.
i=k

Now we have

n

> (n—k)B,_F*(Z) = n!B,F(Z) + (n = 1)! By F'(Z) + .+
! B F"Y(Z) + ByF™(Z).

This gives

n

> (n=k)B, xF*(Z) = nlB,[Ag + Ay + ... + A1 2" + A 27+
k=0
(n— !B, 1[A1 + 2457 + ...+ (n — 1) A, 1 2" 2+
nA,Z" N+ ...+ Bil(n — 1)!A,_1 + nlA, Z] + Bon!A,
= [n!AyB, + (n — 1)A1 By 1+ ... + (n — )A,_1B1+
nlA, By + Z[n!A1B,, + 2(n — 1)!A3B,, 1 + ... + nlA, B{]+
(4) o+ 2" A, By A+ n(n — 1)A, B, 1] + 2"l A, B,].

Also we have

n

D (0= k)A, kGH(Z) = nlAG(Z) + (n — 1) A, G (Z) + ..+

k=0
A G(Z) + AgG(2)
=nlA,[Bo+ B+ ... + By 12" ' + B, 2"+
(n— A, 1[B) +2ByZ + ...+ (n—1)B,_1 2" *+
nB,Z" '+, ...+ Ai[(n — 1)!B,_1 + n!B,Z] + Ayn!B,
= [nlA,Bo+ (n— 1A, 1B+ ...+ (n—1)A1B,, 1+
nlAoBy] + Z[n!A, By +2(n — 1)1A,_ 1By + ... + nlA; B, |+
(5) o+ 2" A By +n(n — 1)!A, 1B, + Z"[n!A, B,].

From (4) and (5), we conclude that

n n

H(Z) =) (n—k)!Byyk F¥(Z2) = (n— k)4, _,GW(Z).

k=0 k=0
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Consider A; = aje + Bje', Bj = vje + d;e' and F(Z) = fi(C1)e + fo(Co)el, therefore

H(Z) =Y (n—k)B,,F*(Z)

k=0

=Y ((n—k)le+ (n— k)lel) (rre + Gare") (A1 (G)e + £ (G))
k=0

= (= )i A (G))e + (0 = B)16a-if5™ (G2))
k=0

((n = B)ui iV (C1) e+2 n— k)0, f57 ()
k

h1(Ci)e + ha(Co)el,

(6)

where

n

m(G) =Y ((n— k)i (C))

e
Il
o

and

3

ha(G2) = Y~ ((n = k)160if37 ().

=0

Let ¥ = ¥ie + ¥ae’ be a zero of G(Z) = g1(¢1)e + g2((2)el, therefore ¥, and 9, are the
zeros of g1(¢;) and go((s) respectively. Also = e + pge’ is a suitably chosen point in D,
therefore

ol

p €Xi={G €A |G—|<rn}cC
and

po € Xo={G EA: | —c| <m}CC
respectively. Hence with the help of Walsh’s theorem [5] for complex polynomials, we have
that all the zeros of hi(¢;) and hsy((s) are respectively of the forms

wy = py + U
and
Wy = i + V.
This implies from Lemma 2.2 that all the zeros of bi-complex polynomial
H(Z) = hi($1)e + ha(Co)el
are of the form
w = wi€e + wgeT
= (1 4+ D1)e + (pg + 9g)el
= (pre +V1et) + (uge + Uel)
= p+ 1.

Hence the theorem is proved completely. O
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