SOFT INTERSECTION AND SOFT UNION k-IDEALS OF HEMIRINGS AND THEIR APPLICATIONS

Rukhshanda Anjum, Aqib Raza Khan Lodhi, Mohammad Munir*, and Nasreen Kausar

Abstract

The main aim of this paper is to discuss two different types of soft hemirings, soft intersection and soft union. We discuss applications and results related to soft intersection hemirings or soft intersection k-ideals and soft union hemirings or soft union k-ideals. The deep concept of k-closure, intersection and union of soft sets, \wedge-product and \vee-product among soft sets, upper β-inclusion and lower β-inclusion of soft sets is discussed here. Many applications related to soft intersection-union sum and soft intersection-union product of sets are investigated in this paper. We characterize k-hemiregular hemirings by the soft intersection k-ideals and soft union k-ideals.

1. Introduction

H. S. Vandiver [25] tell about the principle idea of semirings as a common generalization of rings and distributive lattices. Semirings are use in the fields of pure as well as applied mathematics. Several similar structures, and results related to semirings have been described by different researchers(See [9, 26, 27]). Semirings with additive inverse have been discussed by Karvellas [13]. Kaplansky [10], Petrich [19], Goodearl [10], Reutenauer [20] and Fang [15] have also discussed of semirings. Semirings are made for resolving problems in many fields of applied mathematics and information sciences. Hemirings, a semiring with zero, satisfying the commutative property of addition, have been discussed by Xueling Ma Jianming Zhan [16] in their research.

Ideals are use in studying semirings, group theory and rings. In the same way, ideals take a main role in different results and properties associated with hemirings. There are generalization of ideals but Henriksen, in [11], describes a special type of ideals which is k-ideals. La Torre, in [14], discussed many properties and results of k-ideals in hemirings. Some further generalizations of ideals such as h-ideals, and m ideals can be looked over in $[2,4,7,8,18,23,24]$. Hemirings are applicable in automata

[^0]and formal languages. Kanak Ray Chowdhury and others, in [6], discussed about the regular semirings. Basic concepts related to k-subhemirings are studied by Shabir et al., in [22-24].

Molodtsov [17] give the concepts of soft sets in the latest history of mathematics. Ali and others in [3] offer more new operations on soft sets. Presently, the studies and researches about algebraic structures of soft sets are expanded in different fields of mathematics like soft rings [1], soft group [5], soft semirings [7], soft BCK/BCIAlgebras [12], soft intersection near-rings [21] and so on. Soft sets were studied by many researchers but Xueling Ma and Jianming Zhan [16] studied soft set as an approximate function. They also discussed the intersection and union of soft sets, \vee-product, \wedge-product of different soft sets, Upper β-inclusion of different soft set. Jianming Zhan and others, in [28], introduced the basic ideas of soft union h-ideals of hemirings and investigated some characteristics of h-hemiregular hemirings by soft union h-ideals.

In this article, we study two different types of soft hemirings; soft intersection and soft union hemirings. We give applications and outcomes related to soft intersection hemirings, soft intersection k-ideals, soft union hemirings and soft union k-ideals. We deal with intersection and union of soft sets. Several applications which are linked with soft intersection-union sum, soft intersection-union product of soft sets are discussed here. We characterize k-hemiregular hemirings by means of soft intersection k-ideals, soft union k-ideals.

In order to present our research work in an organized way, in Section 2, we discuss some basic definitions which will be used in our further course of work. In Section 3, we deal with the idea of soft intersection hemirings and soft union hemirings, soft intersection k-ideals and derive some related properties. In Section 4, we discuss the characterizations of k-hemiregular hemirings by means of soft intersection k-ideals. We also discuss the charaterstics of soft union k-ideals of hemirings. The conclusion of the paper is presented in the final Section 5 .

2. Preliminaries

Definition 2.1. [7]. Suppose $(S,+, \cdot)$ be the semiring having zero and $(S,+)$ be the commutative semigroup, then $(S,+, \cdot)$ is is said to be hemiring .

Definition 2.2. [7]. Suppose S is a hemiring and $\emptyset \neq P \subseteq S$. If the closure law holds in P with respect to + and \cdot, then P is called a subhemiring of S.

Definition 2.3. [4]. Consider $(S,+, \cdot)$ is a hemiring, $\emptyset \neq Q \subseteq S$, so Q is a left ideal (right ideal) of S if $\left(\mathbf{T}_{\mathbf{1}}\right) r^{\prime}+r^{\prime \prime} \in Q$ for all $r^{\prime}, r^{\prime \prime} \in Q$, and ($\left.\mathbf{T}_{\mathbf{2}}\right) S Q \subseteq Q(Q S \subseteq Q)$. If Q is the left ideal and the right ideal of S, so Q be two-sided or simply an ideal of S.

Definition 2.4. [7]. Let X is a subhemiring (left ideal, right ideal, ideal) of S. If for any $t \in S$, and $r, w \in X, t+r=w$ implies $t \in X$, then X is a k-subhemiring (left k-ideal, right k-ideal, k-ideal) of S, respectively .

Definition 2.5. [16]. Let $X \subseteq S$, so k-closure of X, indicated by \bar{X}, is defined as

$$
\bar{X}=\{t \in S \mid t+r=w \text { for some } r, w \in X\} .
$$

From here onward, we shall assume that S is a hemiring, R a universal set, T the set of parameters, $F(R)$ the power set of R and $X, Y, Z \subseteq T$.

Definition 2.6. [16]. A soft set of R, denoted by g_{X}, be the function defined as

$$
g_{X}: T \rightarrow F(R) \text { such that } g_{X}(m)=\emptyset \text { if } m \notin X
$$

The soft set g_{X} is also said to be a approximate function. A soft set over R will be defined by the set of ordered pairs $g_{X}=\left\{\left(m, g_{X}(m)\right) \mid m \in T, g_{X}(m) \in F(R)\right\}$. So that soft set is a parametrized family of subsets of the universal set R. Therefore, the power set, $F(R)$, is the set of all soft sets over R.

Definition 2.7. [16]. Suppose $g_{X}, g_{Y} \in F(R)$, Then:

1. The intersection of g_{X} and g_{Y}, represented by $g_{X} \widetilde{\cap} g_{Y}$, is defined by $g_{X} \widetilde{\cap} g_{Y}=$ $g_{X \cap \tilde{}}$, where $g_{X \cap \widetilde{ }}(m)=g_{X}(m) \cap g_{Y}(m), \forall m \in T$.
2. The union of g_{X} and g_{Y}, represented by $g_{X} \widetilde{\cup} g_{Y}$, is define by $g_{X} \widetilde{\cup} g_{Y}=g_{X \tilde{\cup} Y}$, where $g_{X \cup \cup}(m)=g_{X}(m) \cup g_{Y}(m), \forall m \in T$.

Definition 2.8. [16]. Let $g_{X}, g_{Y} \in F(R)$, so \wedge-product and \vee-product of g_{X} and g_{Y}, denoted respectively by $g_{X} \wedge g_{Y}$ and $g_{X} \vee g_{Y}$, are respectively defined by $g_{X \wedge Y}(i, z)=g_{X}(i) \cap g_{Y}(z)$, and $g_{X \vee Y}(i, z)=g_{X}(i) \cup g_{Y}(z)$ for all $i, z \in T$.

Definition 2.9. Referring to [16, 28].

1. Let g_{X} be the soft set over R and $\beta \subseteq R$, so upper β-inclusion of g_{X}, represented by $R\left(g_{X}, \beta\right)$, be defined as $R\left(g_{X} ; \beta\right)=\left\{t \in X \mid g_{X}(t) \supseteq \beta\right\}$.
2. Let g_{X} be the soft set over R and $\beta \subseteq R$, so lower β-inclusion of g_{X}, represented as $L\left(g_{X}, \beta\right)$, be defined as $L\left(g_{X} ; \beta\right)=\left\{t \in X \mid g_{X}(t) \subseteq \beta\right\}$.

Definition 2.10. [28]. Let $g_{X}, g_{Y} \in F(\underset{\sim}{R})$, therefore g_{X} is the soft subset of g_{Y} denoted by $g_{X} \widetilde{\subseteq} g_{Y}$ and is defined by $g_{X}(u) \widetilde{\subseteq} g_{Y}(u) \forall u \in T$.

Definition 2.11. [28]. Suppose $E \subseteq S$, then the soft characteristic function of the complement of E, indicated by $S_{E^{c}}$, is defined by

$$
S_{E^{c}}(t)=\left\{\begin{array}{l}
\emptyset \text { if } t \in E, \\
R \text { if } t \in S \backslash E .
\end{array}\right.
$$

Proposition 2.12. [28]. Consider $L, M \subseteq S$. Therefore:

1. $M \subseteq L \Rightarrow S_{L^{c}} \widetilde{\subseteq} S_{M^{c}}$,
2. $S_{L^{c}} \widetilde{\cup} S_{M^{c}}=S_{L^{c} R M^{c}}$.

3. Soft Intersection hemirings, Soft Intersection k-ideals and Soft Union hemirings

In this section, we work on the basic and important idea of soft intersection hemirings, soft interstion k-ideals and soft union hemirings and look over some of their associated properties.

Definition 3.1. Suppose g_{S} is a soft set over R. If
$\left(\mathbf{S H}_{1}\right) g_{S}(m+u) \supseteq g_{S}(m) \cap g_{S}(u)$,
$\left(\mathbf{S H}_{2}\right) g_{S}(m u) \supseteq g_{S}(m) \cap g_{S}(u)$,
$\left(\mathbf{S H}_{3}\right) g_{S}(m) \supseteq g_{S}(r) \cap g_{S}(w)$ with $m+r=w \forall m, u, \in S$ for some $r, w \in S$, then g_{S} be the soft intersection hemiring of S over R.

Example 3.2. Suppose $R=S=Z_{4}=\{0,1,2,3\}$ is a hemiring of non-negative integers modulo 4 . If we define the soft set g_{S} over R by $g_{S}(0)=\{0,1,2,3\}=$ $g_{S}(2), g_{S}(1)=g_{S}(3)=\{0,2\}$, then g_{S} be the soft intersection hemiring of S over R.

Definition 3.3. Suppose g_{S} is a soft set over R. If
$\left(\mathbf{C}_{1}\right) g_{S}(m+u) \supseteq g_{S}(m) \cap g_{S}(u)$
$\left(\mathbf{C}_{2}\right) g_{S}(m) \supseteq g_{S}(r) \cap g_{S}(w)$ with $m+r=w \forall m, u \in S$, for some $r, w \in S$
$\left(\mathbf{C}_{3}\right) g_{S}(m u) \supseteq g_{S}(u)$ for all $m, u \in S$,
then g_{S} is called a soft intersection left k-ideal over R. Similarly, soft intersection right k-ideal can be defined.
If the soft set over R be a soft intersection-left k-ideal and soft intersection-right k-ideal of S over R, then it is said to be a soft intersection k-ideal of S over R.

Example 3.4. Suppose $R=Z^{+}$be a universal set and $S=Z_{4}$ be the set of parameters. Define a soft set g_{S} by
$g_{S}(0)=\left\{m \mid m \in Z^{+}\right\}, g_{S}(1)=\left\{4 m \mid m \in Z^{+}\right\}, g_{S}(2)=\left\{2 m \mid m \in Z^{+}\right\}$and $g_{S}(3)=\left\{3 m \mid m \in Z^{+}\right\}$,
so g_{S} be the soft intersection- k-ideal of S over R.
Definition 3.5. Suppose g_{S} is the soft set over R. If
$\left(\mathbf{S R}_{1}\right) g_{S}(m+u) \subseteq g_{S}(m) \cup g_{S}(u)$,
$\left(\mathbf{S R}_{2}\right) g_{S}(m u) \subseteq g_{S}(m) \cup g_{S}(u)$,
$\left(\mathbf{S R}_{3}\right) g_{S}(m) \subseteq g_{S}(r) \cup g_{S}(w)$ with $m+r=w$ for all $m, u, \in S$. for some $r, w \in S$, so the soft set g_{S} over R is said to be a soft union hemiring of S over R.

Example 3.6. Consider $S=Z_{6}=\{0,1,2,3,4,5\}$ is a hemiring of non-negative integers modulo 6 . Suppose that $R=Z_{5}=\{0,1,2,3,4\}$ be a universal set. Define the soft set g_{S} over R by

$$
g_{S}(0)=\{1\}, g_{S}(2)=g_{S}(4)=\{1,2,3\}, g_{S}(1)=g_{S}(5)=\{1,2,3,4\}, g_{S}(3)=\{1,4\},
$$

then g_{S} be a soft union hemiring of S over R.

Example 3.7. Suppose $R=\left\{\left.\left(\begin{array}{cc}\mathrm{m} & \mathrm{m} \\ \mathrm{m} & 0\end{array}\right) \right\rvert\, m \in Z_{5}\right\}$ be the set of 2×2 matrices with Z_{5} as a universal set. Suppose $S=Z_{6}=\{0,1,2,3,4,5\}$ is a hemiring of nonnegative integers modulo 6 . Define the soft set g_{S} over R as
$g_{S}(0)=\left\{\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)\right\}, g_{S}(2)=g_{S}(4)=\left\{\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}2 & 2 \\ 2 & 0\end{array}\right),\left(\begin{array}{ll}3 & 3 \\ 3 & 0\end{array}\right),\left(\begin{array}{ll}4 & 4 \\ 4 & 0\end{array}\right)\right\}$
$g_{S}(1)=g_{S}(5)=\left\{\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}2 & 2 \\ 2 & 0\end{array}\right),\left(\begin{array}{ll}3 & 3 \\ 3 & 0\end{array}\right)\right\}, g_{S}(3)=\left\{\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}4 & 4 \\ 4 & 0\end{array}\right)\right\}$.
Then, g_{S} be the soft union hemiring of S over R.
Remark 3.8. If $g_{S}(t)=\emptyset$ for all $t \in S$, so g_{S} be a soft union-hemiring of S over R. We will represent this type of soft union-hemiring as $\widetilde{\eta}$. Also we see that $\widetilde{\eta}=S_{S^{c}}$.

Definition 3.9. Let $l_{S}, h_{S} \in F(R)$, then

1. soft intersection -union sum, $l_{S} \oplus h_{S}$, be defined as

$$
\left(l_{S} \oplus h_{S}\right)(t)=\left\{\begin{array}{l}
\cap_{t+r_{1}+w_{1}=r_{2}+w_{2}}^{\cap}\left(l_{S}\left(r_{1}\right) \cup l_{S}\left(r_{2}\right) \cup h_{S}\left(w_{1}\right) \cup h_{S}\left(w_{2}\right)\right) \\
R \text { if it cannot be expressed as } t+r_{1}+w_{1}=r_{2}+w_{2}
\end{array}\right.
$$

2. Soft Intersection-union product, $l_{S} \diamond m_{s}$, is defined by

$$
\left(l_{S} \diamond m_{s}\right)(t)=\left\{\begin{array}{l}
\cap \cap{ }_{p=1}^{n}\left(l_{S}\left(r_{p}\right) \cup l_{S}\left(r_{q}^{\prime}\right) \cup h_{S}\left(w_{p}\right) \cup h_{S}\left(w_{q}^{\prime}\right)\right) \\
\forall p=1,2,3, \cdots, n ; q=1,2,3, \cdots, m . \\
R \text { if it cannot be expressed as } t+\sum_{p=1}^{n} r_{p} w_{p}=\sum_{q=1}^{m} r_{q}^{\prime} w_{q}^{\prime}
\end{array}\right.
$$

Proposition 3.10. Suppose $g_{S_{1}}$ and $g_{S_{2}}$ are two soft intersection hemirings of S_{1} and S_{2} over R respectively, then $g_{S_{1}} \wedge g_{S_{2}}$ is a soft intersection hemiring of $S_{1} \times S_{2}$ over R.

Proof. Let $g_{S_{1}}$ and $g_{S_{2}}$ be two soft intersection hemirings of S_{1} and S_{2} over R, respectively.

1. Let $\left(v_{1}, c_{1}\right),\left(v_{2}, c_{2}\right) \in S_{1} \times S_{2}$, then

$$
\begin{aligned}
g_{S_{1} \wedge S_{2}}\left(\left(v_{1}, c_{1}\right)+\left(v_{2}, c_{2}\right)\right) & =g_{S_{1} \wedge S_{2}}\left(v_{1}+v_{2}, c_{1}+c_{2}\right) \\
& =g_{S_{1}}\left(v_{1}+v_{2}\right) \cap g_{S_{2}}\left(c_{1}+c_{2}\right) \\
& \supseteq\left(g_{S_{1}}\left(v_{1}\right) \cap g_{S_{1}}\left(v_{2}\right)\right) \cap\left(g_{S_{2}}\left(c_{1}\right) \cap g_{S_{2}}\left(c_{2}\right)\right) \\
& =\left(g_{S_{1}}\left(v_{1}\right) \cap g_{S_{2}}\left(c_{1}\right)\right) \cap\left(g_{S_{1}}\left(v_{2}\right) \cap g_{S_{2}}\left(c_{2}\right)\right) \\
& =g_{S_{1} \wedge S_{2}}\left(v_{1}, c_{1}\right) \cap g_{S_{1} \wedge S_{2}}\left(v_{2}, c_{2}\right) .
\end{aligned}
$$

2. Let, $\left(v_{1}, c_{1}\right),\left(v_{2}, c_{2}\right) \in S_{1} \times S_{2}$, then

$$
\begin{aligned}
g_{S_{1} \wedge S_{2}}\left(\left(v_{1}, c_{1}\right)\left(v_{2}, c_{2}\right)\right)= & g_{S_{1} \wedge S_{2}}\left(v_{1} v_{2}+c_{1} c_{2}, v_{1} c_{2}+c_{1} v_{2}\right) \\
= & g_{S_{1}}\left(v_{1} v_{2}+c_{1} c_{2}\right) \cap g_{S_{2}}\left(v_{1} c_{2}+c_{1} v_{2}\right) \\
\supseteq & \left(g_{S_{1}}\left(v_{1} v_{2}\right) \cap g_{S_{1}}\left(c_{1} c_{2}\right)\right) \cap\left(g_{S_{2}}\left(v_{1} c_{2}\right) \cap g_{S_{2}}\left(c_{1} v_{2}\right)\right) \\
\supseteq & g_{S_{1}}\left(v_{1}\right) \cap g_{S_{1}}\left(v_{2}\right) \cap g_{S_{1}}\left(c_{1}\right) \cap g_{S_{1}}\left(c_{2}\right) \cap g_{S_{2}}\left(v_{1}\right) \cap \\
& g_{S_{2}}\left(c_{2}\right) \cap g_{S_{2}}\left(c_{1}\right) g_{S_{2}}\left(v_{2}\right) \\
= & g_{S_{1}}\left(v_{1}\right) \cap g_{S_{1}}\left(c_{1}\right) \cap g_{S_{2}}\left(v_{1}\right) \cap g_{S_{2}}\left(c_{1}\right) \cap g_{S_{1}}\left(v_{2}\right) \cap \\
& g_{S_{1}}\left(c_{2}\right) \cap g_{S_{2}}\left(v_{2}\right) \cap g_{S_{2}}\left(c_{2}\right) \\
= & g_{S_{1} \wedge S_{2}}\left(v_{1}, c_{1}\right) \cap g_{S_{1} \wedge S_{2}}\left(v_{2}, c_{2}\right) .
\end{aligned}
$$

3. Let $\left(j_{1}, j_{2}\right),\left(w_{1}, w_{2}\right),\left(v_{1}, v_{2}\right) \in S_{1} \times S_{2}$ be such that $\left(v_{1}, v_{2}\right)+\left(j_{1}, j_{2}\right)=\left(w_{1}, w_{2}\right)$, and so $v_{1}+j_{1}=w_{1}$ and $v_{2}+j_{2}=w_{2}$.
Then we get

$$
\begin{aligned}
g_{S_{1} \wedge S_{2}}\left(v_{1}, v_{2}\right) & =g_{S_{1}}\left(v_{1}\right) \cap g_{S_{2}}\left(v_{2}\right) \\
& \supseteq\left(g_{S_{1}}\left(j_{1}\right) \cap g_{S_{1}}\left(w_{1}\right)\right) \cap\left(g_{S_{2}}\left(j_{2}\right) \cap g_{S_{2}}\left(w_{2}\right)\right) \\
& =\left(g_{S_{1}}\left(j_{1}\right) \cap g_{S_{2}}\left(w_{2}\right)\right) \cap\left(g_{S_{1}}\left(w_{1}\right) \cap g_{S_{2}}\left(w_{2}\right)\right) \\
& =g_{S_{1} \wedge S_{2}}\left(j_{1}, j_{2}\right) \cap g_{S_{1} \wedge S_{2}}\left(w_{1}, w_{2}\right) .
\end{aligned}
$$

Therefore, $g_{S_{1} \wedge S_{2}}$ is a soft intersection hemiring of $S_{1} \times S_{2}$ over R.
Proposition 3.11. Let $g_{S_{1}}$ and $g_{S_{2}}$ are two soft intersection- k-ideals of S_{1} and S_{2} over R respectively, then $g_{S_{1}} \wedge g_{S_{2}}$ is a soft intersection- k-ideal of $S_{1} \times S_{2}$ over R.

Remark 3.12. Note that $g_{S_{1}} \vee g_{S_{2}}$ is not the soft intersection hemiring or soft intersection- k-ideal of $S_{1} \times S_{2}$ over R.

Example 3.13. Consider $R=S_{3}$, the symmetric group, be the universal set, $S_{1}=Z_{5}=\{0,1,2,3,4\}$ and $S_{2}=Z_{2}=\{0,1\}$ be two hemirings of non-negative integers modulo 5 and modulo 2 respectively. Define two soft sets $g_{S_{1}}$ and $g_{S_{2}}$ over R by

$$
\begin{gathered}
g_{S_{1}}(0)=S_{3}, g_{S_{1}}(1)=g_{S_{1}}(4)=\{(1),(12),(132)\}, g_{S_{2}}(0)=S_{3} \\
g_{S_{1}}(2)=g_{S_{1}}(3)=\{(12),(123),(132)\}, g_{S_{2}}(1)=\{(1),(12),(132)\} .
\end{gathered}
$$

It is clear that $g_{S_{1}}$ and $g_{S_{2}}$ are two soft intersection hemirings over R. However, we have

$$
\begin{aligned}
g_{S_{1} \vee S_{2}}((3,1)+(1,0)) & =g_{S_{1} \vee S_{2}}(4,1) \\
& =g_{S_{1}}(4) \cup g_{S_{2}}(1) \\
& =\{(1),(12),(132)\}
\end{aligned}
$$

but

$$
\begin{aligned}
g_{S_{1} \vee S_{2}}(3,1) \cap g_{S_{1} \vee S_{2}}(1,0) & =\left(g_{S_{1}}(3) \cup g_{S_{2}}(1)\right) \cap\left(g_{S_{1}}(1) \cup g_{S_{2}}(0)\right) \\
& =\{(1),(12),(123),(132)\} \cap S_{3} \\
& =\{(1),(12),(123),(132)\} .
\end{aligned}
$$

This implies that

$$
g_{S_{1} \vee S_{2}}((3,1)+(1,0)) \nsupseteq g_{S_{1} \vee S_{2}}(3,1) \cap g_{S_{1} \vee S_{2}}(1,0) .
$$

Hence, $g_{S_{1} \vee S_{2}}$ is not a soft intersection-hemiring nor a soft intersection- k-ideal over R.
Theorem 3.14. Consider l_{S} and m_{S} are two soft intersection hemirings of S over R so $l_{S} \widetilde{\cap} m_{S}$ be the soft intersection hemiring of S over R.

Proof. Let l_{S} and m_{S} are two soft intersection hemirings of S over R.

1. Let $v, c \in S$, then

$$
\begin{aligned}
\left(l_{S} \widetilde{\cap} m_{S}\right)(v+c) & =l_{S}(v+c) \cap m_{S}(v+c) \\
& \supseteq\left(l_{S}(v) \cap l_{S}(c)\right) \cap\left(m_{S}(v) \cap m_{S}(c)\right) \\
& =\left(l_{S}(v) \cap m_{S}(v)\right) \cap\left(l_{S}(c) \cap m_{S}(c)\right) \\
& =\left(l_{S} \widetilde{\cap} m_{S}\right)(v) \cap\left(l_{S} \widetilde{\cap} m_{S}\right)(c) .
\end{aligned}
$$

2. Let $v, c \in S$. Then, we get

$$
\begin{aligned}
\left(l_{S} \widetilde{\cap} m_{S}\right)(v c) & =l_{S}(v c) \cap m_{S}(v c) \\
& \supseteq\left(l_{S}(v) \cap l_{S}(c)\right) \cap\left(m_{S}(v) \cap m_{S}(c)\right) \\
& =\left(l_{S}(v) \cap m_{S}(v)\right) \cap\left(l_{S}(c) \cap m_{S}(c)\right) \\
& =\left(l_{S} \widetilde{\cap} m_{S}\right)(v) \cap\left(l_{S} \widetilde{\cap} m_{S}\right)(c) .
\end{aligned}
$$

3. Let $j, w, v \in S$ such that $v+j=w$, then

$$
\begin{aligned}
\left(l_{S} \widetilde{\cap} m_{S}\right)(v) & =l_{S}(v) \cap m_{S}(v) \\
& \supseteq\left(l_{S}(j) \cap l_{S}(w)\right) \cap\left(m_{S}(j) \cap m_{S}(w)\right) \\
& =\left(l_{S}(j) \cap m_{S}(j)\right) \cap\left(l_{S}(w) \cap m_{S}(w)\right) \\
& =\left(l_{S} \widetilde{\cap} m_{S}\right)(j) \cap\left(l_{S} \widetilde{\cap} m_{S}\right)(w) .
\end{aligned}
$$

Therefore $l_{S} \widetilde{\cap} m_{S}$ be the soft intersection-hemiring of S over R.
Similarly, we can derive the next theorem:
Theorem 3.15. Suppose l_{S} and m_{S} are two soft intersection- k-ideals of S over R, therefore $l_{S} \widetilde{\cap} m_{S}$ be the soft intersection- k-ideal of S over R.

Theorem 3.16. Suppose h_{S} is soft set over R, so h_{S} be the soft union hemiring of S over R iff it satisfies $\left(\mathbf{S R}_{3}\right)$ and $\left(\mathbf{S R}_{4}\right)\left(h_{S} \oplus h_{S}\right) \cong h_{S}$ and $\left(\mathbf{S R}_{5}\right)\left(h_{S} \diamond h_{S}\right) \cong h_{S}$.

Proof. Suppose h_{S} be the soft union-hemiring of S over R. Consider $m \in S$. If $\left(h_{S} \oplus h_{S}\right)(m)=R$, then it is clear that $\left(h_{S} \oplus h_{S}\right)(m) \supseteq h_{S}(m)$. So

$$
\left(h_{S} \oplus h_{S}\right) \widetilde{\cong} h_{S} .
$$

Otherwise, consider $m+j_{1}+w_{1}=j_{2}+w_{2}$ for some $j_{1}, w_{1}, j_{2}, w_{2} \in S$, then

$$
\begin{aligned}
\left(h_{S} \oplus h_{S}\right)(m) & ={ }_{m+j_{1}+w_{1}=j_{2}+w_{2}}^{\cap}\left(h_{S}\left(j_{1}\right) \cup h_{S}\left(j_{2}\right) \cup h_{S}\left(w_{1}\right) \cup h_{S}\left(w_{2}\right)\right) \\
& \supseteq_{m+j_{1}+w_{1}=j_{2}+w_{2}}^{\cap}\left(h_{S}\left(j_{1}+w_{1}\right) \cup h_{S}\left(j_{2}+w_{2}\right)\right) \\
& \supseteq{ }_{m+j_{1}+w_{1}=j_{2}+w_{2}}\left(h_{S}(m)\right) \\
& =h_{S}(m) .
\end{aligned}
$$

Hence,

$$
\left(h_{S} \oplus h_{S}\right) \cong h_{S} .
$$

Let $m \in S$. If $\left(h_{S} \diamond h_{S}\right)(m)=R$, then it is clear that $\left(h_{S} \diamond h_{S}\right)(m) \supseteq h_{S}(m)$. So $\left(h_{S} \diamond h_{S}\right) \widetilde{\varrho} h_{S}$. Otherwise, consider

$$
m+\sum_{p=1}^{n} j_{p} w_{p}=\sum_{q=1}^{t} j_{q}^{\prime} w_{q}^{\prime} \text { for all } p=1,2,3, \cdots, n ; q=1,2,3, \cdots, t .
$$

So

$$
\begin{aligned}
\left(h_{S} \diamond h_{S}\right)(m) & =\underset{m+\sum_{p=1}^{n} j_{p} w_{p}=\sum_{q=1}^{t} j_{q}^{\prime} w_{q}^{\prime}}{\cap}\left(h_{S}\left(j_{p}\right) \cup h_{S}\left(j_{q}^{\prime}\right) \cup h_{S}\left(w_{p}\right) \cup h_{S}\left(w_{q}^{\prime}\right)\right) \\
& \supseteq \underset{m+\sum_{p=1}^{n} j_{p} w_{p}=\sum_{q=1}^{t} j_{q}^{\prime} w_{q}^{\prime}}{\cap}\left(h_{S}\left(\sum_{p=1}^{n} j_{p} w_{p}\right) \cup h_{S}\left(\sum_{q=1}^{m} j_{q}^{\prime} w_{q}^{\prime}\right)\right) \\
& \supseteq \underset{m+\sum_{p=1}^{n} j_{p} w_{p}=\sum_{q=1}^{t} j_{q}^{\prime} w_{q}^{\prime}}{\cap}\left(h_{S}(m)\right)=h_{S}(m)
\end{aligned}
$$

Hence

$$
\left(h_{S} \diamond h_{S}\right) \cong h_{S} .
$$

Conversely, Suppose that the conditions $\left(S R_{3}\right),\left(S R_{4}\right)$ and $\left(S R_{5}\right)$ hold, then

$$
\begin{aligned}
h_{S}(m+c) & \subseteq\left(h_{S} \oplus h_{S}\right)(m+c) \\
& ={ }_{m+c+j_{1}+w_{1}=j_{2}+w_{2}}\left(h_{S}\left(j_{1}\right) \cup h_{S}\left(j_{2}\right) \cup h_{S}\left(w_{1}\right) \cup h_{S}\left(w_{2}\right)\right) \\
& \subseteq h_{S}(m) \cup h_{S}(c) \cup h_{S}(0) \\
& =h_{S}(m) \cup h_{S}(c) .
\end{aligned}
$$

Thus ($\mathbf{S R}_{1}$) holds.

$$
\begin{aligned}
h_{S}(m c) & \subseteq\left(h_{S} \diamond h_{S}\right)(m c) \\
& =\quad \cap \quad \cap \quad\left(h_{p}\left(j_{p}\right) \cup h_{S}\left(j_{q}^{\prime}\right) \cup h_{S}\left(w_{p}\right) \cup h_{S}\left(w_{q}^{\prime}\right)\right) \\
& \cap p=1,2,3, \ldots ., n ; q=1,2,3, \ldots ., t . \\
& \subseteq h_{S}(m) \cup h_{S}(c) \cup h_{S}(0) \\
& =h_{S}(m) \cup h_{S}(c) .
\end{aligned}
$$

Thus ($\mathbf{S R}_{2}$) hold.
Hence, l_{S} is a soft union hemiring of S over R.
Proposition 3.17. Suppose $\emptyset \neq X \subseteq S$, then X be a k-subhemiring of S iff the soft subset h_{S} represented as

$$
h_{S}(d)= \begin{cases}\gamma & \text { if } d \in S \backslash X \\ \delta & \text { if } d \in X\end{cases}
$$

Proof. Consider X is a k-subhemiring of S. Let $v, c \in S$.
(1) If $v, c \in X$, then $v c, v+w \in X$.

So

$$
h_{S}(v+c)=h_{S}(v c)=h_{S}(v)=h_{S}(c)=\delta,
$$

and then

$$
h_{S}(v+c) \subseteq h_{S}(v) \cup h_{S}(c) \text { and } h_{S}(v c) \subseteq h_{S}(v) \cup h_{S}(c) .
$$

(2) If either one of v and c does not belong to X, then $v+c \in X$ or $v+c \notin X$ and $v c \in X$ or $v c \notin X$.
In any case,

$$
h_{S}(v+c) \subseteq h_{S}(v) \cup h_{S}(c)=\gamma \text { and } h_{S}(v c) \subseteq h_{S}(v) \cup h_{S}(c)=\gamma
$$

(3) Now, let $j, w, v \in S$ such that $v+j=w$.
(i) If $j, w \in X$, then $v \in X$, and so $h_{S}(v)=h_{S}(j) \cup h_{S}(w)=\delta$.
(ii) If $j \notin X$ or $w \notin X$, then $h_{S}(v) \subseteq h_{S}(j) \cup h_{S}(w)=\gamma$.

Then, h_{S} is an soft union hemiring of S over R.
Conversely, suppose h_{S} be the soft union hemiring of S over R.
(1) Suppose $v, c \in X$, then $h_{S}(v+c) \subseteq h_{S}(v) \cup h_{S}(c)=\delta$ and $h_{S}(v c) \subseteq h_{S}(v) \cup h_{S}(c)=\delta$,

$$
\Longrightarrow v+c, v c \in X .
$$

(2) Suppose $v \in S$ and $j, w \in X$ such that $v+j=c$.
then $h_{S}(v)=h_{S}(j) \cup h_{S}(w)=\delta$.
So, $v \in X$. Hence X is a k-subhemiring of S.
Lemma 3.18. 1. Let h_{S} is soft set over R and $\gamma \subseteq R$ such that $\gamma \in I_{n}\left(h_{S}\right)$.
If h_{S} is a soft union hemiring of S over R, so $L\left(h_{S} ; \gamma\right)$ is a k-subhemiring of S.
2. Suppose h_{S} is soft set over R, and $L\left(h_{S} ; \gamma\right)$ a lower k-subhemiring of h_{S} for each $\gamma \subseteq R, I_{n}\left(h_{S}\right)$ an ordered set by inclusion so h_{S} be the soft union hemiring of S over R.

Proof. 1. As $h_{S}(v)=\gamma$ for some $v \in S$, so $\emptyset \neq L\left(h_{S} ; \gamma\right) \subseteq S$. Suppose $v, c \in$ $L\left(h_{S} ; \gamma\right)$, then $h_{S}(v) \subseteq \gamma$ and $h_{S}(c) \subseteq \gamma$. Now

$$
\begin{gathered}
h_{S}(v+c) \subseteq h_{S}(v) \cup h_{S}(c) \subseteq \gamma \cup \gamma=\gamma \\
h_{S}(v c) \subseteq h_{S}(v) \cup h_{S}(c) \subseteq \gamma \cup \gamma=\gamma .
\end{gathered}
$$

This implies that $v+c, v c \in L\left(h_{S} ; \gamma\right)$. Now, Suppose $v \in S$ and $j, w \in L\left(h_{S} ; \gamma\right)$ with $v+j=w$. Then, $h_{S}(j) \subseteq \gamma$ and $h_{S}(w) \subseteq \gamma$ and

$$
h_{S}(v) \subseteq h_{S}(j) \cup h_{S}(w)=\gamma \cup \gamma=\gamma /
$$

This implies that $v \in L\left(h_{S} ; \gamma\right)$. Therefore, $L\left(h_{S} ; \gamma\right)$ is a k-subhemiring of S.
2. Suppose $v, c \in S$ such that $h_{S}(v)=\gamma_{1}$ and $h_{S}(c)=\gamma_{2}$, where $\gamma_{1} \subseteq \gamma_{2}$.

Then $v \in L\left(h_{S} ; \gamma_{1}\right)$ and $c \in L\left(h_{S} ; \gamma_{2}\right)$, and so $v \in L\left(h_{S} ; \gamma_{2}\right)$.
We know that $L\left(h_{S} ; \gamma\right)$ is a k-subhemiring of $S, \forall \gamma \subseteq R$. Thus, $v+c \in$ $L\left(h_{S} ; \gamma_{2}\right)$ and $v c \in L\left(h_{S} ; \gamma_{2}\right)$.

Therefore

$$
\begin{gathered}
h_{S}(v+c) \subseteq \gamma_{2}=\gamma_{1} \cup \gamma_{2}=h_{S}(v) \cup h_{S}(c), \\
h_{S}(v c) \subseteq \gamma_{2}=\gamma_{1} \cup \gamma_{2}=h_{S}(v) \cup h_{S}(c) .
\end{gathered}
$$

Now, suppose $v, j, w \in S$ with $v+j=w$ such that $h_{S}(v)=\gamma_{1}$ and $h_{S}(c)=\gamma_{2}$, where $\gamma_{1} \subseteq \gamma_{2}$.

Then, $j \in L\left(h_{S} ; \gamma_{1}\right)$ and $w \in L\left(h_{S} ; \gamma_{2}\right)$, and so $j \in L\left(h_{S} ; \gamma_{2}\right)$. As $L\left(h_{S} ; \gamma\right)$ is a k-subhemiring of S for each $\gamma \subseteq R$, so $v \in L\left(h_{S} ; \gamma_{2}\right)$. Then, $h_{S}(v) \subseteq \gamma_{2}=$ $\gamma_{1} \cup \gamma_{2}=h_{S}(v) \cup h_{S}(c)$.
Hence. h_{S} is a soft union hemiring of S over R.

4. k-hemiregular hemirings via soft intersection- k-ideals and soft union-k-ideals

In this section, we discuss the characterizations of k-hemiregular hemirings by means of soft intersection k-ideals. We also discuss the properties of soft union k ideals of hemirings.

Definition 4.1. [22]. Suppose S is a hemiring, if for each $r \in S, \exists r_{1}, r_{2} \in S$ such that $t+t r_{1} r=t r_{2} t$, then S is said to be k-hemiregular.

Lemma 4.2. [22]. If H and M, are the right and the left k-ideal of S respectively, then $\overline{H M} \subseteq H \cap M$.

Lemma 4.3. [22]. A hemiring S be a k-hemiregular if and only if for any right k-ideal H and for any left k-ideal $M, \overline{H M}=H \cap M$.

Definition 4.4. Let $l_{S}, m_{S} \in F(R)$, then the soft k-sum, $\left(l_{S}+_{k} m_{S}\right)$, and soft k-product, $\left(l_{S} \circ_{k} m_{S}\right)$, are respectively defined by

$$
\left(l_{S}+{ }_{k} m_{S}\right)(v)=\left\{\begin{array}{l}
\cup v+j_{1}+w_{1}=j_{2}+w_{2} \\
\emptyset \text { if } v \text { cannot be expressed as } v+l_{1}+j_{1}=j_{2}+w_{2}
\end{array}\right.
$$

and

$$
\left(l_{S} \circ_{k} m_{S}\right)(v)=\left\{\begin{array}{l}
\cup v+j_{1} w_{1}=j_{2} w_{2} \\
\emptyset \text { if } v \text { cannot be expressed as } v+j_{1} w_{1}=j_{2} w_{2}
\end{array}\right.
$$

Lemma 4.5. Let l_{S} and m_{S} be soft intersection right k-ideals and soft intersection left k-ideals of S over R respectively, then $l_{S} \circ_{k} m_{S} \widetilde{\subseteq} l_{S} \widetilde{\cap} m_{S}$.

Proof. If $\left(l_{S} \circ_{k} m_{S}\right)(v)=\emptyset$, then it is clear that $l_{S} \circ_{k} m_{S} \widetilde{\subseteq} l_{S} \widetilde{\cap} m_{S}$. Otherwise, we have

$$
\begin{aligned}
\left(l_{S} o_{k} m_{S}\right)(v) & =\underset{v+j_{1} w_{1}=j_{2} w_{2}}{\cup}\left(l_{S}\left(j_{1}\right) \cap l_{S}\left(j_{2}\right) \cap m_{S}\left(w_{1}\right) \cap m_{S}\left(w_{2}\right)\right) \\
& \subseteq{ }_{v+j_{1} w_{1}=j_{2} w_{2}}^{\cup}\left(l_{S}\left(j_{1} w_{1}\right) \cap l_{S}\left(j_{2} w_{2}\right) \cap m_{S}\left(j_{1} w_{1}\right) \cap m_{S}\left(j_{2} w_{2}\right)\right) \\
& \subseteq \underset{v+j_{1} w_{1}=j_{2} w_{2}}{ }\left(l_{S}(v) \cap m_{S}(v)\right) \\
& =l_{S}(v) \cap m_{S}(v) \\
& =\left(l_{S} \widetilde{\cap} m_{S}\right)(v)
\end{aligned}
$$

This implies that

$$
l_{S} \circ_{k} m_{S} \widetilde{\subseteq} l_{S} \widetilde{\cap} m_{S}
$$

Definition 4.6. [16]. Let $H \subseteq S$, then S_{H} is soft characteristic function of H defined as

$$
S_{H}(m)= \begin{cases}R & \text { if } v \in H \\ \emptyset & \text { if } v \notin H\end{cases}
$$

Proposition 4.7. Suppose $H, M \subseteq S$, so the following statements are satisfied:

1. $H \subseteq M \Rightarrow S_{H} \widetilde{\subseteq} S_{M}$.
2. $S_{H} \widetilde{\cap} S_{M}=S_{H \cap M}$.
3. $S_{H} \circ_{k} S_{M}=S_{\overline{H M}}$.

Proof. 1. Let $H \subseteq M$. Suppose $i \in S_{H}$, then $i \in H$ or $i \notin H$. Since $H \subseteq M$, so $i \in M$ or $i \notin M$. This implies $i \in S_{M}$, which again implies $S_{H} \widetilde{\subseteq} S_{M}$.
2. Suppose $i \in S_{H} \widetilde{\cap} S_{M}$. Since $\left(S_{H} \widetilde{\cap} S_{M}\right)(i)=S_{H}(i) \cap S_{M}(i)$, there are two cases to be discussed.
(a) If $i \in H$ and $i \in M$, then

$$
\left(S_{H} \widetilde{\cap} S_{M}\right)(i)=R .
$$

(b) If $i \notin H$ and $i \notin M$, then

$$
\left(S_{H} \widetilde{\cap} S_{M}\right)(i)=\emptyset .
$$

Therefore, if $i \in H \cap M$, then $\left(S_{H} \widetilde{\cap} S_{M}\right)(i)=R$. If $i \notin H \cap M$, then

$$
\left(S_{H} \widetilde{\cap} S_{M}\right)(i)=\emptyset .
$$

Now, if $i \in H \cap M$, then by definition of characteristic function of $H \cap M$, we get

$$
\left(S_{H} \widetilde{\cap} S_{M}\right)(i)=R .
$$

If $i \notin H \cap M$, then by definition of characteristic function of $H \cap M$, we have

$$
\left(S_{H} \widetilde{\cap} S_{M}\right)(i)=\emptyset .
$$

Hence

$$
S_{H} \widetilde{\cap} S_{M}=S_{H \cap M} .
$$

3. Let $i \in\left(S_{H} \circ_{k} S_{M}\right)$, then

$$
\left(S_{H} \circ_{k} S_{M}\right)(i)=\left\{\begin{array}{l}
\cup \cup_{i+j_{1} w_{1}=j_{2} w_{2}}\left(S_{H}\left(j_{1}\right) \cap S_{H}\left(j_{2}\right) \cap S_{M}\left(w_{1}\right) \cap S_{M}\left(w_{2}\right)\right) \\
\text { if } i \text { can be expressed as } i+j_{1} w_{1}=j_{2} w_{2} \\
\emptyset \text { if } i \text { cannot be expressed as } i+j_{1} w_{1}=j_{2} w_{2}
\end{array}\right.
$$

Now, let $i \in S_{\overline{H M}}$, then

$$
S_{\overline{H M}}(i)=\left\{\begin{array}{l}
R \text { if } i \in \overline{H M} \\
\emptyset \text { if } i \notin \overline{H M} .
\end{array}\right.
$$

If $i \in \overline{H M}$, then $i+j_{1} w_{1}=j_{2} w_{2}$. If $i \notin \overline{H M}$, then i cannot be expressed as $i+j_{1} w_{1}=j_{2} w_{2}$. Hence

$$
S_{H} \circ_{k} S_{M}=S_{\overline{H M}} .
$$

Theorem 4.8. Suppose S be the hemiring, Then the following statements are equivalent :

1. S is k-hemiregular,
2. $h_{S} \circ_{k} m_{S} \widetilde{\subseteq} h_{S} \widetilde{\cap} m_{S}$ for any soft intersection right k-ideal h_{S} and soft intersection left k-ideal m_{S} of S over R, respectively.

Proof. (1) $\Rightarrow(2)$.
Suppose S is k-hemiregular hemiring. Let h_{S} be the soft intersection right k-ideal over R and m_{S} be the soft intersection left k-ideal of S over R. If $\left(h_{S} \circ_{k} m_{S}\right)(o)=\emptyset$, then it is clear that $h_{S} \circ_{k} m_{S} \widetilde{\subseteq} h_{S} \widetilde{\cap} m_{S}$. Otherwise, we have

$$
\left(h_{S} \circ_{k} m_{S}\right)(o)=\underset{o+j_{1} w_{1}=j_{2} w_{2}}{\cup}\left(h_{S}\left(j_{1}\right) \cap h_{S}\left(j_{2}\right) \cap m_{S}\left(w_{1}\right) \cap m_{S}\left(w_{2}\right)\right) .
$$

Since h_{S} is soft intersection right k-ideal over R, m_{S} is the soft intersection left k-ideal of S over R. So we get

$$
\begin{aligned}
\left(h_{S} \circ_{k} m_{S}\right)(o) & \subseteq \underset{o+j_{1} w_{1}=j_{2} w_{2}}{\cup}\left(h_{S}\left(j_{1} w_{1}\right) \cap h_{S}\left(j_{2} w_{2}\right) \cap m_{S}\left(j_{1} w_{1}\right) \cap m_{S}\left(j_{2} w_{2}\right)\right) \\
& \subseteq \bigcup_{o+j_{1} w_{1}=j_{2} w_{2}}\left(h_{S}(o) \cap m_{S}(o)\right) \\
& =h_{S}(o) \cap m_{S}(o) \\
& =\left(h_{S} \widetilde{\cap} m_{S}\right)(o)
\end{aligned}
$$

We conclude that

$$
h_{S} \circ_{k} m_{S} \widetilde{\subseteq} h_{S} \widetilde{\cap} m_{S}
$$

Suppose $o \in S$, then $\exists j, j^{\prime} \in S$ such that

$$
o+o j o=o j^{\prime} o
$$

Since S be k-hemiregular. Then we have

$$
\begin{aligned}
\left(h_{S} \circ_{k} m_{S}\right)(o) & =\underset{o+j_{1} w_{1}=j_{2} w_{2}}{ }\left(h_{S}\left(j_{1}\right) \cap h_{S}\left(j_{2}\right) \cap m_{S}\left(w_{1}\right) \cap m_{S}\left(w_{2}\right)\right) \\
& \supseteq h_{S}(o j) \cap h_{S}\left(o j^{\prime}\right) \cap m_{S}(o) \\
& \supseteq h_{S}(o) \cap m_{S}(o) \\
& =\left(h_{S} \widetilde{\cap} m_{S}\right)(o)
\end{aligned}
$$

This implies that

$$
h_{S} \circ_{k} m_{S} \widetilde{\cong} h_{S} \widetilde{\cap} m_{S}
$$

Hence

$$
h_{S} \circ_{k} m_{S}=h_{S} \widetilde{\cap} m_{S} .
$$

(2) $\Rightarrow(1)$

Let E be the right k-ideal, T be the left k-ideal of S. Furthermore, we see that S_{R} is a soft intersection right k-ideal over R, S_{T} be the soft intersection left k-ideal of S over R. Suppose $o \in E \cap T$, then,

$$
S_{\overline{E T}}(o)=\left(S_{E} \circ_{k} S_{T}\right)(o)=\left(S_{E} \widetilde{\cap} S_{T}\right)(o)=S_{E \cap T}(o)=R
$$

and so $o \in \overline{E T}$. Then $E \cap T \subseteq \overline{E T}$, but $\overline{E T} \subseteq E \cap T$ is true always. Thus,

$$
E \cap T=\overline{E T}
$$

Hence S is k-hemiregular.
Definition 4.9. Consider h_{S} be the soft set over R. Then, h_{S} is the soft union left k-ideal of S over R if it satisfies the given conditions:
$\left(\mathbf{T}_{1}\right) h_{S}(o+c) \subseteq h_{S}(o) \cup h_{S}(c)$,
$\left(\mathbf{T}_{2}\right) h_{S}(o) \subseteq h_{S}(j) \cup h_{S}(w)$ with $o+j=w \forall o, c, \in S$, for some $j, w \in S$,
$\left(\mathrm{T}_{3}\right) h_{S}(o c) \supseteq h_{S}(c), \forall o, c \in S$.
Similarly, soft union right k-ideal of S over R can be defined. If soft set over R is soft union left k-ideal as well as soft union right k-ideal of S over R, then this soft set over R is said to be a soft union k-ideal of S.

Example 4.10. Consider $S=Z_{6}=\{0,1,2,3,4,5\}$ is hemiring of non-negative integers modulo 6 , let $R=Z_{6}$. Define a soft set h_{S} over R by $h_{S}(0)=\{1\}, h_{S}(2)=$ $h_{S}(4)=\{1,2\}, h_{S}(1)=h_{S}(5)=\{1,2,3\}$ and $h_{S}(3)=\{1,3\}$, then h_{S} be the soft union- k-ideal of S over R.

Theorem 4.11. Suppose h_{S} is the soft set over R, so h_{S} be a soft union-left (right) k-ideal of S over R iff it satisfies $\left(\mathbf{T}_{2}\right)$ and $\left(\mathbf{S R}_{4}\right)\left(\widetilde{\gamma} \oplus h_{S}\right) \cong h_{S}\left(\left(h_{S} \oplus \widetilde{\gamma}\right) \cong h_{S}\right)$ and ($\mathbf{S R}_{6}$) $\left(\widetilde{\gamma} \diamond h_{S}\right) \widetilde{\cong} h_{S}\left(\left(h_{S} \diamond \widetilde{\gamma}\right) \widetilde{\cong} h_{S}\right)$.

Proof. Suppose h_{S} is soft union-left k-ideal of S over R. Suppose $o \in S$. If $(\widetilde{\gamma} \oplus$ $\left.h_{S}\right)(o)=R$, so we can see that $\left(\widetilde{\gamma} \oplus h_{S}\right)(o) \supseteq h_{S}(o)$. So $\left(\widetilde{\gamma} \oplus h_{S}\right) \supseteq h_{S}$. Otherwise, consider $o+j_{1}+w_{1}=j_{2}+w_{2}$ for some $j_{1}, w_{1}, j_{2}, w_{2} \in S$. Then

$$
\begin{aligned}
\left(\widetilde{\gamma} \oplus h_{S}\right)(o) & =\bigcap_{o+j_{1}+w_{1}=j_{2}+w_{2}}^{\cap}\left(\widetilde{\gamma}\left(j_{1}\right) \cup \widetilde{\gamma}\left(j_{2}\right) \cup h_{S}\left(w_{1}\right) \cup h_{S}\left(w_{2}\right)\right) \\
& \supseteq{ }_{o+j_{1}+w_{1}=j_{2}+w_{2}}^{\cap}\left(\emptyset \cup h_{S}\left(j_{1}+w_{1}\right) \cup h_{S}\left(j_{2}+w_{2}\right)\right) \\
& \supseteq{ }_{o+j_{1}+w_{1}=j_{2}+w_{2}}^{\cap}\left(h_{S}(o)\right) \\
& =h_{S}(o) .
\end{aligned}
$$

Hence

$$
\left(\widetilde{\gamma} \oplus h_{S}\right) \cong h_{S}
$$

Thus, $\left(\mathbf{S R}_{4}\right)$ holds.
Let $o \in S$. If $\left(\widetilde{\gamma} \diamond h_{S}\right)(o)=R$, then it is clear that $\left(\widetilde{\gamma} \diamond h_{S}\right)(o) \supseteq h_{S}(o)$. Then $\left(\widetilde{\gamma} \diamond h_{S}\right) \cong h_{S}$. Otherwise, consider

$$
o+\sum_{p=1}^{n} j_{p} w_{p}=\sum_{q=1}^{m} j_{q}^{\prime} w_{q}^{\prime} \forall p=1,2,3, \ldots ., n ; q=1,2,3, \ldots ., m .
$$

Thus

$$
\begin{aligned}
\left(\widetilde{\gamma} \diamond h_{S}\right)(o) & =\underset{o+\sum_{p=1}^{n} j_{p} w_{p}=\sum_{q=1}^{m} j_{q}^{\prime} w_{q}^{\prime}}{\cap}\left(\widetilde{\gamma}\left(j_{p}\right) \cup \widetilde{\gamma}\left(j_{q}^{\prime}\right) \cup h_{S}\left(w_{p}\right) \cup h_{S}\left(w_{q}^{\prime}\right)\right) \\
& \supseteq{ }_{o+\sum_{p=1}^{n} j_{p} w_{p}=\sum_{q=1}^{m} j_{q}^{\prime} w_{q}^{\prime}}^{\cap}\left(\emptyset \cup h_{S}\left(\sum_{p=1}^{n} j_{p} w_{p}\right) \cup h_{S}\left(\sum_{q=1}^{m} j_{q}^{\prime} w_{q}^{\prime}\right)\right) \\
& \supseteq \underset{\substack{o+\sum_{p=1}^{n} j_{p} w_{p}=\sum_{q=1}^{m} j_{q}^{\prime} w_{q}^{\prime}}}{\cap}\left(h_{S}(o)\right) \quad\left(\text { by }\left(\mathbf{T}_{2}\right)\right) \\
& =h_{S}(o)
\end{aligned}
$$

Hence

$$
\left(\widetilde{\gamma} \diamond h_{S}\right) \cong h_{S}
$$

Thus ($\mathbf{S R}_{6}$) holds.
Conversely, suppose that the conditions $\left(\mathbf{T}_{2}\right)$ and $\left(\mathbf{S R}_{4}\right)$ and $\left(\mathbf{S R}_{6}\right)$ hold.

So

$$
\begin{aligned}
h_{S}(o+c) & \subseteq\left(\widetilde{\gamma} \oplus h_{S}\right)(o+c) \\
& =\underset{o+c+j_{1}+w_{1}=j_{2}+w_{2}}{\cap}\left(\widetilde{\gamma}\left(j_{1}\right) \cup \widetilde{\gamma}\left(j_{2}\right) \cup h_{S}\left(w_{1}\right) \cup h_{S}\left(w_{2}\right)\right) \\
& \subseteq \emptyset \cup h_{S}(o) \cup h_{S}(c) \\
& =h_{S}(o) \cup h_{S}(c) .
\end{aligned}
$$

Thus, (T_{1}) holds.

$$
\begin{aligned}
h_{S}(o c) & \subseteq\left(\widetilde{\gamma} \diamond h_{S}\right)(o c) \\
& =\quad \cap \quad \cap \quad{ }_{o c+\sum_{p=1}^{n} j_{p} w_{p}=\sum_{q=1}^{m} j_{q}^{\prime} w_{q}^{\prime}}\left(\widetilde{\gamma}\left(j_{p}\right) \cup \widetilde{\gamma}\left(j_{q}^{\prime}\right) \cup h_{S}\left(w_{p}\right) \cup h_{S}\left(w_{q}^{\prime}\right)\right) \\
\forall p & =1,2,3, \ldots ., n ; q=1,2,3, \ldots ., m . \\
& \subseteq \widetilde{\gamma}(o) \cup h_{S}(c) \\
& =\emptyset \cup h_{S}(c)=h_{S}(c) .
\end{aligned}
$$

Therefore, $\left(\mathbf{T}_{3}\right)$ holds. Thus, h_{S} is a soft union-left k-ideal of S over R.
Similarly, we can show that the above statement is true for soft union-right k-ideals.

Proposition 4.12. Suppose h_{S} and m_{S} be two soft union-left or right k-deals of S over R, so $h_{S} \widetilde{\cup} m_{S}$ be the soft union-left (right) k-ideal of S over R.

Proof. Consider h_{S} and m_{S} are two soft union-left k-deals of S over R. For any $o, c \in S$,

$$
\begin{aligned}
\left(h_{S} \widetilde{\cup} m_{S}\right)(o+c) & =h_{S}(o+c) \cup m_{S}(o+c) \subseteq h_{S}(o) \cup h_{S}(c) \cup m_{S}(o) \cup m_{S}(c) \\
& =\left(h_{S}(o) \cup m_{S}(o)\right) \cup\left(h_{S}(c) \cup m_{S}(c)\right)=\left(h_{S} \widetilde{\cup} m_{S}\right)(o) \cup\left(h_{S} \widetilde{\cup} m_{S}\right)(c)
\end{aligned}
$$

Then (\mathbf{T}_{1}) holds. Now, let $o, j, w \in S$ with $o+j=w$, then

$$
\begin{aligned}
\left(h_{S} \widetilde{\cup} m_{S}\right)(o) & =h_{S}(j) \cup m_{S}(w) \subseteq\left(h_{S}(j) \cup h_{S}(w)\right) \cup\left(m_{S}(j) \cup m_{S}(w)\right) \\
& =\left(\left(h_{S}(j) \cup m_{S}(j)\right) \cup\left(h_{S}(w) \cup m_{S}(w)\right)=\left(h_{S} \widetilde{\cup} m_{S}\right)(j) \cup\left(h_{S} \widetilde{\cup} m_{S}\right)(w)\right.
\end{aligned}
$$

Then (\mathbf{T}_{2}) holds.
Now

$$
\left(h_{S} \widetilde{\cup} m_{S}\right)(o c)=h_{S}(o c) \cup m_{S}(o c) \subseteq h_{S}(c) \cup m_{S}(c)=\left(h_{S} \widetilde{\cup} m_{S}\right)(c)
$$

Then (\mathbf{T}_{3}) holds.
Hence, $h_{S} \widetilde{\cup} m_{S}$ is a soft union-left k-deal of S over R.
Similarly we can prove that $h_{S} \widetilde{\cup} m_{S}$ be the soft union-right k-deal of S over R.
Proposition 4.13. Consider l_{S} and m_{S} be two soft union-left (right) k-deals of S over R, therefore $l_{S} \diamond m_{S}$ is soft union-left(right) k-ideal of S over R.

Proof. Consider l_{S} and m_{S} be two soft union-left k-deals of S over R. Suppose $v, c \in S$, so

$$
\begin{aligned}
& \left(l_{S} \diamond m_{S}\right)(v) \cup\left(l_{S} \diamond m_{S}\right)(c)=\underset{v+\sum_{p=1}^{n} j_{p} w_{p}=\sum_{q=1}^{m} j_{q}^{\prime} w_{q}^{\prime}}{\cap}\left(l_{S}\left(j_{p}\right) \cup l_{S}\left(j_{q}^{\prime}\right) \cup m_{S}\left(w_{p}\right) \cup m_{S}\left(w_{q}^{\prime}\right)\right) \cup \\
& \underset{c+\sum_{p=1}^{o} e_{p} f_{p}=\sum_{q=1}^{s} e_{q}^{\prime} f_{q}^{\prime}}{\cap}\left(l_{S}\left(e_{p}\right) \cup l_{S}\left(e_{q}^{\prime}\right) \cup m_{S}\left(f_{p}\right) \cup m_{S}\left(f_{q}^{\prime}\right)\right) \\
& =\underset{v+\sum_{p=1}^{n} j_{p} w_{p}=\sum_{q=1}^{m} j_{q}^{\prime} w_{q}^{\prime}}{\cap} \cap \sum_{p=1}^{o} e_{p} f_{p}=\sum_{q=1}^{s} e_{q}^{\prime} f_{q}^{\prime}\left(l_{S}\left(j_{p}\right) \cup l_{S}\left(j_{q}^{\prime}\right) \cup m_{S}\left(w_{p}\right) \cup\right. \\
& \left.m_{S}\left(w_{q}^{\prime}\right) \cup l_{S}\left(e_{p}\right) \cup l_{S}\left(e_{q}^{\prime}\right) \cup m_{S}\left(f_{p}\right) \cup m_{S}\left(f_{q}^{\prime}\right)\right) \\
& \supseteq \underset{\substack{v+c \sum_{p=1}^{v} v_{p} c_{p}=\sum_{q=1}^{c} v_{q}^{\prime} c_{q}^{\prime}}}{\cap}\left(l_{S}\left(v_{p}\right) \cup l_{S}\left(v_{q}^{\prime}\right) \cup m_{S}\left(c_{p}\right) \cup m_{S}\left(c_{q}^{\prime}\right)\right. \\
& \left(v_{p} c_{p}=j_{p} w_{p}+e_{p} f_{p}, v_{q}^{\prime} c_{q}^{\prime}=j_{q}^{\prime} w_{q}^{\prime}+e_{q}^{\prime} f_{q}^{\prime}\right) \\
& =\left(l_{S} \diamond m_{S}\right)(v+c)
\end{aligned}
$$

Thus, (\mathbf{T}_{1}) holds.

$$
\begin{aligned}
\left(l_{S} \diamond m_{S}\right)(c) & =\underset{c+\sum_{p=1}^{n} j_{p} w_{p}=\sum_{q=1}^{m} j_{q}^{\prime} w_{q}^{\prime}}{\cap}\left(l_{S}\left(j_{p}\right) \cup l_{S}\left(j_{q}^{\prime}\right) \cup m_{S}\left(w_{p}\right) \cup m_{S}\left(w_{q}^{\prime}\right)\right) \\
& =\underset{v c+\sum_{p=1}^{n}\left(v j_{p}\right) w_{p}=\sum_{q=1}^{m}\left(v j_{q}^{\prime}\right) w_{q}^{\prime}}{\cap}\left(l_{S}\left(j_{p}\right) \cup l_{S}\left(j_{q}^{\prime}\right) \cup m_{S}\left(w_{p}\right) \cup m_{S}\left(w_{q}^{\prime}\right)\right. \\
& \supseteq \underset{v c+\sum_{p=1}^{n}\left(v j_{p}\right) w_{p}=\sum_{q=1}^{m}\left(v j_{q}^{\prime}\right) w_{q}^{\prime}}{\cap}\left(l_{S}\left(v j_{p}\right) \cup l_{S}\left(v j_{q}^{\prime}\right) \cup m_{S}\left(w_{p}\right) \cup m_{S}\left(w_{q}^{\prime}\right)\right. \\
& =\left(l_{S} \diamond m_{S}\right)(v c)
\end{aligned}
$$

Therefore, $\left(\mathbf{T}_{3}\right)$ holds. Consider $v, j, w \in S$ with $v+j=w$, then similarly we can check

$$
\left(l_{S} \diamond m_{S}\right)(j) \cup\left(l_{S} \diamond m_{S}\right)(w) \supseteq\left(l_{S} \diamond m_{S}\right)(v)
$$

Therefore, $\left(\mathbf{T}_{2}\right)$ holds. Thus, $l_{S} \diamond m_{S}$ is soft union-left k-ideal of over R.
Similarly, we can prove that $l_{S} \diamond m_{S}$ is an soft union-right k-ideal of over R.
Theorem 4.14. Suppose l_{S} is soft union-right k-deal of S over R and h_{S} is soft union-left k-deal of S over R, then $l_{S} \diamond h_{S} \cong l_{S} \widetilde{\cup} h_{S}$.

Proof. Let h_{S} be the soft union-right k-ideal of S over R, then

$$
h_{S} \diamond m_{S} \widetilde{\supseteq} h_{S} \diamond \widetilde{\gamma} \check{\supseteq} h_{S}
$$

which implies that $h_{S} \diamond m_{S} \check{\cong} h_{S}$. Also, when m_{S} is soft union-left k-deal of S over R, so

$$
h_{S} \diamond m_{S} \widetilde{\supseteq} \widetilde{\gamma} \diamond m_{S} \widetilde{\supseteq} m_{S}
$$

which implies that $h_{S} \diamond m_{S} \cong m_{S}$. Hence,

$$
h_{S} \diamond m_{S} \check{\cong} h_{S} \widetilde{\cup} m_{S}
$$

5. Conclusion

In this paper we worked on two different types of soft hemirings, that is, soft intersection and soft union. Many applications and results related to soft intersection hemirings or soft intersection k-ideals and soft union hemirings or soft union k-ideals were discussed. The deep concept of k-closure also used in this paper. We also defined about \wedge-product and \vee-product among soft sets. Many applications related to soft intersection-union sum and soft intersection-union product of sets were also discussed. We characterized k-hemiregular hemirings by soft intersection k-ideals and soft union k-ideals. This work can be extended for different types of ideals in the future. The theory developed can be used in applied fields such as decision making and data analysis.

Declarations

Data availability:

The data used to support the findings of this study are available from the corresponding author upon request.

Competing interests:

The authors declare that they have no competing interests.

Authors' contributions:

All authors contributed equally and significantly in writing this article. All authors read and approved the final manuscript.

Funding:

This work does not receive any external funding.

References

[1] Acar, U., Koyuncu, F., and Tanay, B, Soft sets and soft rings, Computers \& Mathematics with Applications 59 (11) (2010), 3458-3463.
[2] Akram, M, Bifuzzy left h-ideals of hemirings with interval-valued membership function, Mathematica Slovaca 59 (6) (2009), 719-730.
[3] Ali, M. I., Feng, F., Liu, X., Min, W. K., and Shabir, M, On some new operations in soft set theory, Computers \& Mathematics with Applications 57 (9) (2009), 1547-1553.
[4] Anjum, R., Ullah, S., Chu, Y.M., Munir, M., Kausar, N. and Kadry, S., Characterizations of ordered h-regular semirings by ordered h-ideals, AIMS Mathematics 5 (6) (2020), 5768-+5790.
[5] Çağman, N., Çıtak, F., and Aktaş, H, Soft int-group and its applications to group theory, Neural Computing and Applications 21 (1), 151-158.
[6] Chowdhury, K. R., Sultana, A., Mitra, N. K., and Khan, A. K, Some structural properties of semirings, Annals of Pure and Applied Mathematics 5 (2), 158-167.
[7] Dudek, W. A., Shabir, M., and Anjum, R, Characterizations of hemirings by their h-ideals, Computers \& Mathematics with Applications 59 (9) (2010), 3167-3179.
[8] Feng, F., Jun, Y. B., and Zhao, X, Soft semirings, Computers \& Mathematics with Applications 56 (10), 2621-2628.
[9] Golan, J. S, Semirings and their Applications Springer Science \& Business Media (2013).
[10] Goodearl, K. R, Von Neumann regular rings (Vol. 4). London: Pitman (1979).
[11] Henriksen, M, Ideals in semirings with commutative addition, Amer. Math. Soc. Notices 6 (1) (1958), 321.
[12] Jun, Y. B, Soft bck/bci-algebras, Computers \& Mathematics with Applications 56 (5) (2008), 1408-1413.
[13] Karvellas, P. H, Inversive semirings, Journal of the Australian Mathematical Society 18 (3) (1974), 277-288.
[14] La Torre, D. R, On h-ideals and k-ideals in hemirings, Publ. Math. Debrecen 12 (2) (1965), 219-226.
[15] Li, F, Regularity of semigroup rings, In Semigroup Forum 53 (1) (1996), 72-81. Springer-Verlag.
[16] Ma, X., and Zhan, J, Soft intersection h-ideals of hemirings and its applications, Ital. J. of Pur. and Appl. Math 32 (2014), 301-308.
[17] Molodtsov, D, Soft set theory - first results, Computers \& Mathematics with Applications 37 (4-5) (1999), 19-31.
[18] Munir, M., Kausar, N., Anjum, R., Ali, A. and Hussain, R., A characterization of semigroups through their fuzzy generalized m-bi-ideals, The Korean Journal of Mathematics 28 (3) (2020), 623-638.
[19] Petrich, M, Introduction to Semiring, Charles E Merrill Publishing Company, Ohio, 105 (1973).
[20] Reutenauer, C., and Straubing, H, Inversion of matrices over a commutative semiring, Journal of Algebra 88 (2) (1984), 350-360.
[21] Sezgin, A., Atagün, A. O., and Çağman, N, Soft intersection near-rings with its applications, Neural Computing and Applications 21 (1) (2012), 221-229.
[22] Shabir, M., and Anjum, R, Characterizations of Hemirings by the Properties of Their k-Ideals, Applied Mathematics 4 (5) (2013) 753-768.
[23] Shabir, M., and Anjum, R, Right k-weakly regular hemirings, Quasigroups and Related Systems 20 (1) (2012), 97-112.
[24] Shabir, M., and Anjum, R, ON k-Bi-Ideals in hemS IN HEMIRINGS, New Mathematics and Natural Computation 8 (03) (2012), 323-341.
[25] Vandiver, H. S, Note on a simple type of algebra in which the cancellation law of addition does not hold, Bulletin of the American Mathematical Society 40 (12) (1934), 914-920.
[26] Vasanthi, T., and Amala, M, Some special classes of semirings and ordered semirings, Annals of Pure and Applied Mathematics 4 (2), 145-159.
[27] Vasanthi, T., and Sulochana, N, On the additive and multiplicative structure of semirings, Annals of Pure and Applied Mathematics 3 (1) (2013), 78-84.
[28] Zhan, J., Çağman, N., and Sezgin Sezer, A, Applications of soft union sets to hemirings via SU-h-ideals, Journal of Intelligent \& Fuzzy Systems 26 (3) (2014), 1363-1370.

Rukhshanda Anjum

Department of Mathematics and Statistics, University of Lahore, Lahore, Pakistan. E-mail: rukhshanda.anjum@math.uol.edu.pk

Aqib Raza Khan Lodhi
Department of Mathematics and Statistics, University of Lahore, Lahore, Pakistan. E-mail: aqibrazakhn@gmail.com

Mohammad Munir
Department of Mathematics, Government Postgraduate College, Abbottabad, Pakistan.
E-mail: dr.mohammadmunir@gmail.com

Nasreen Kausar

Department of Mathematics and Statistics, University of Agriculture, Faisalabad, Pakistan.
E-mail: kausar.nasreen57@gmail.com

[^0]: Received August 29, 2021. Revised June 1, 2022. Accepted June 1, 2022.
 2010 Mathematics Subject Classification: 16Y99, 16 Y60.
 Key words and phrases: Soft set; soft k-sum; soft k-product; k-hemiregular hemiring; soft union k-ideal.

 * Corresponding author.
 (C) The Kangwon-Kyungki Mathematical Society, 2022.

 This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

