DOI QR코드

DOI QR Code

Current methodologies in construction of plant-pollinator network with emphasize on the application of DNA metabarcoding approach

  • Namin, Saeed Mohamadzade (Agricultural Science and Technology Institute, Andong National University) ;
  • Son, Minwoong (Department of Plant Medicals, Andong National University) ;
  • Jung, Chuleui (Agricultural Science and Technology Institute, Andong National University)
  • Received : 2022.01.08
  • Accepted : 2022.03.16
  • Published : 2022.06.30

Abstract

Background: Pollinators are important ecological elements due to their role in the maintenance of ecosystem health, wild plant reproduction, crop production and food security. The pollinator-plant interaction supports the preservation of plant and animal populations and it also improves the yield in pollination dependent crops. Having knowledge about the plant-pollinator interaction is necessary for development of pesticide risk assessment of pollinators and conservation of endangering species. Results: Traditional methods to discover the relatedness of insects and plants are based on tracing the visiting pollinators by field observations as well as palynology. These methods are time-consuming and needs expert taxonomists to identify different groups of pollinators such as insects or identify flowering plants through palynology. With pace of technology, using molecular methods become popular in identification and classification of organisms. DNA metabarcoding, which is the combination of DNA barcoding and high throughput sequencing, can be applied as an alternative method in identification of mixed origin environmental samples such as pollen loads attached to the body of insects and has been used in DNA-based discovery of plant-pollinator relationship. Conclusions: DNA metabarcoding is practical for plant-pollinator studies, however, lack of reference sequence in online databases, taxonomic resolution, universality of primers are the most crucial limitations. Using multiple molecular markers is preferable due to the limitations of developed universal primers, which improves taxa richness and taxonomic resolution of the studied community.

Keywords

Acknowledgement

The research received support from a grant to Professor Chuleui Jung via the Basic Science Research Program of the National Research Foundation of Korea (NRF), funded by the Ministry of Education (NRF-2018R1A6A1A03024862).

References

  1. Armbruster WS. The specialization continuum in pollination systems: diversity of concepts and implications for ecology, evolution and conservation. Funct Ecol. 2017;31(1):88-100. https://doi.org/10.1111/1365-2435.12783.
  2. Bailes EJ, Ollerton J, Pattrick JG, Glover BJ. How can an understanding of plant-pollinator interactions contribute to global food security? Curr Opin Plant Biol. 2015;26:72-9. https://doi.org/10.1016/j.pbi.2015.06.002.
  3. Baksay S, Pornon A, Burrus M, Mariette J, Andalo C, Escaravage N. Experimental quantification of pollen with DNA metabarcoding using ITS1 and trnL. Sci Rep. 2020;10(1):4202. https://doi.org/10.1038/s41598-020-61198-6.
  4. Balmaki B, Christensen T, Dyer LA. Reconstructing great basin butterfly-pollen interaction networks over the past century. BioRxiv. 424352 [Preprint]. 2020 [cited 2021 Sep 25]. Available from: https://doi.org/10.1101/2020.12.25.424352.
  5. Bascompte J, Jordano P, Olesen JM. Asymmetric coevolutionary networks facilitate biodiversity maintenance. Science. 2006;312(5772):431-3. https://doi.org/10.1126/science.1123412.
  6. Bascompte J, Jordano P. Plant-animal mutualistic networks: the architecture of biodiversity. Annu Rev Ecol Evol Syst. 2007;38:567-93. https://doi.org/10.1146/annurev.ecolsys.38.091206.095818.
  7. Batuecas I, Alomar O, Castane C, Pinol J, Boyer S, Gallardo-Montoya L, et al. Development of a multi-primer metabarcoding approach to understand trophic interactions in agroecosystems. Insect Science. 2022. https://doi.org/10.1111/1744-7917.12992.
  8. Beattie AJ. A technique for the study of insect-borne pollen. Pan-Pac Entomol. 1971;47(1):82.
  9. Bell KL, Burgess KS, Botsch JC, Dobbs EK, Read TD, Brosi BJ. Quantitative and qualitative assessment of pollen DNA metabarcoding using constructed species mixtures. Mol Ecol. 2019;28(2):431-55. https://doi.org/10.1111/mec.14840.
  10. Bell KL, Burgess KS, Okamoto KC, Aranda R, Brosi BJ. Review and future prospects for DNA barcoding methods in forensic palynology. Forensic Sci Int Genet. 2016;21:110-6. https://doi.org/10.1016/j.fsigen.2015.12.010.
  11. Bell KL, Fowler J, Burgess KS, Dobbs EK, Gruenewald D, Lawley B, et al. Applying pollen DNA metabarcoding to the study of plant-pollinator interactions. Appl Plant Sci. 2017a;5(6):apps.1600124. https://doi.org/10.3732/apps.1600124.
  12. Bell KL, Loeffler VM, Brosi BJ. An rbcL reference library to aid in the identification of plant species mixtures by DNA metabarcoding. Appl Plant Sci. 2017b;5(3):apps.1600110. https://doi.org/10.3732/apps.1600110.
  13. Bengtsson-Palme J, Richardson RT, Meola M, Wurzbacher C, Tremblay ED, Thorell K, et al. Metaxa2 Database Builder: enabling taxonomic identification from metagenomic or metabarcoding data using any genetic marker. Bioinformatics. 2018;34(23):4027-33. https://doi.org/10.1093/bioinformatics/bty482.
  14. Bovo S, Utzeri VJ, Ribani A, Cabbri R, Fontanesi L. Shotgun sequencing of honey DNA can describe honey bee derived environmental signatures and the honey bee hologenome complexity. Sci Rep. 2020;10(1):9279. https://doi.org/10.1038/s41598-020-66127-1.
  15. Boyer F, Mercier C, Bonin A, Le Bras Y, Taberlet P, Coissac E. obitools: a unix-inspired software package for DNA metabarcoding. Mol Ecol Resour. 2016;16(1):176-82. https://doi.org/10.1016/j.foodchem.2014.08.060.
  16. Bruni I, Galimberti A, Caridi L, Scaccabarozzi D, De Mattia F, Casiraghi M, et al. A DNA barcoding approach to identify plant species in multiflower honey. Food Chem. 2015;170:308-15. https://doi.org/10.1016/j.foodchem.2014.08.060.
  17. Chagnon PL, Bradley RL, Klironomos JN. Using ecological network theory to evaluate the causes and consequences of arbuscular mycorrhizal community structure. New Phytol. 2012;194(2):307-12. https://doi.org/10.1111/j.1469-8137.2011.04044.x.
  18. Chen S, Yao H, Han J, Liu C, Song J, Shi L, et al. Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS One. 2010;5(1):e8613. https://doi.org/10.1371/journal.pone.0008613.
  19. Cheng T, Xu C, Lei L, Li C, Zhang Y, Zhou S. Barcoding the kingdom Plantae: new PCR primers for ITS regions of plants with improved universality and specificity. Mol Ecol Resour. 2016;16(1):138-49. https://doi.org/10.1111/1755-0998.12438.
  20. Corriveau JL, Coleman AW. Rapid screening method to detect potential biparental inheritance of plastid DNA and results for over 200 angiosperm species. Am J Bot. 1988;75(10):1443-58. https://doi.org/10.2307/2444695.
  21. Danieli-Silva A, de Souza JMT, Donatti AJ, Campos RP, Vicente-Silva J, Freitas L, et al. Do pollination syndromes cause modularity and predict interactions in a pollination network in tropical high-altitude grasslands? Oikos. 2012;121(1):35-43. https://doi.org/10.1111/j.1600-0706.2011.19089.x.
  22. de Vere N, Jones LE, Gilmore T, Moscrop J, Lowe A, Smith D, et al. Using DNA metabarcoding to investigate honey bee foraging reveals limited flower use despite high floral availability. Sci Rep. 2017;7:42838. https://doi.org/10.1038/srep42838.
  23. de Vere N, Rich TC, Ford CR, Trinder SA, Long C, Moore CW, et al. DNA barcoding the native flowering plants and conifers of Wales. PLoS One. 2012;7(6):e37945. https://doi.org/10.1371/journal.pone.0037945.
  24. Dodd ME, Silvertown J, Chase MW. Phylogenetic analysis of trait evolution and species diversity variation among angiosperm families. Evolution. 1999;53(3):732-44. https://doi.org/10.1111/j.1558-5646.1999.tb05367.x.
  25. Dormann CF, Strauss R. A method for detecting modules in quantitative bipartite networks. Methods Ecol Evol. 2014;5(1):90-8. https://doi.org/10.1111/2041-210X.12139.
  26. Dufresne Y, Lejzerowicz F, Perret-Gentil LA, Pawlowski J, Cordier T. SLIM: a flexible web application for the reproducible processing of environmental DNA metabarcoding data. BMC Bioinformatics. 2019;20(1):88. https://doi.org/10.1186/s12859-019-2663-2.
  27. Edgar RC. UTAX algorithm. 2015. https://www.drive5.com/usearch/ manual8.1/utax_algo.html. Accessed 1 January 2022.
  28. Elbrecht V, Leese F. Can DNA-based ecosystem assessments quantify species abundance? Testing primer bias and biomass--sequence relationships with an innovative metabarcoding protocol. PLoS One. 2015;10(7):e0130324. https://doi.org/10.1371/journal.pone.0130324.
  29. Elton CS. Animal ecology. London: Sidgwick and Jackson; 1927.
  30. Forup ML, Henson KSE, Craze PG, Memmott J. The restoration of ecological interactions: plant-pollinator networks on ancient and restored heathlands. J Appl Ecol. 2008;45(3):742-52. https://doi.org/10.1111/j.1365-2664.2007.01390.x.
  31. Frost CM, Allen WJ, Courchamp F, Jeschke JM, Saul WC, Wardle DA. Using network theory to understand and predict biological invasions. Trends Ecol Evol. 2019;34(9):831-43. https://doi.org/10.1016/j.tree.2019.04.012.
  32. Frund J, Linsenmair KE, Bluthgen N. Pollinator diversity and specialization in relation to flower diversity. Oikos. 2010;119(10):1581-90. https://doi.org/10.1111/j.1600-0706.2010.18450.x
  33. Galal-Khallaf A, Ardura A, Borrell YJ, Garcia-Vazquez E. Towards more sustainable surimi? PCR-cloning approach for DNA barcoding reveals the use of species of low trophic level and aquaculture in Asian surimi. Food Control. 2016;61:62-9. https://doi.org/10.1016/j.foodcont.2015.09.027.
  34. Galimberti A, De Mattia F, Bruni I, Scaccabarozzi D, Sandionigi A, Barbuto M, et al. A DNA barcoding approach to characterize pollen collected by honeybees. PLoS One. 2014;9(10):e109363. https://doi.org/10.1371/journal.pone.0109363.
  35. Galtier N, Nabholz B, Glemin S, Hurst GD. Mitochondrial DNA as a marker of molecular diversity: a reappraisal. Mol Ecol. 2009;18(22):4541-50. https://doi.org/10.1111/j.1365-294x.2009.04380.x.
  36. Garrido-Sanz L, Senar MA, Pinol J. Estimation of the relative abundance of species in artificial mixtures of insects using low-coverage shotgun metagenomics. MBMG. 2020;4:e48281. https://doi.org/10.3897/mbmg.4.48281.
  37. Ghosh S, Mohamadzade Namin S, Jung C. Metagenomics of pollen borne microbes and gut microbiota of honey bee. In: De Mandal S, Panda AK, Kumar NS, Bisht SS, Jin F, editors. Metagenomics and microbial ecology: techniques and applications. Boca Raton (FL): CRC Press; 2021. p. 105-16.
  38. Gomez JM, Perfectti F, Jordano P. The functional consequences of mutualistic network architecture. PLoS One. 2011;6(1):e16143. https://doi.org/10.1371/journal.pone.0016143.
  39. Gous A, Swanevelder DZH, Eardley CD, Willows-Munro S. Plant-pollinator interactions over time: pollen metabarcoding from bees in a historic collection. Evol Appl. 2019;12(2):187-97. https://doi.org/10.1111/eva.12707.
  40. Hawkins J, de Vere N, Griffith A, Ford CR, Allainguillaume J, Hegarty MJ, et al. Using DNA metabarcoding to identify the floral composition of honey: a new tool for investigating honey bee foraging preferences. PLoS One. 2015;10(8):e0134735. https://doi.org/10.1371/journal.pone.0134735.
  41. Hebert PD, Penton EH, Burns JM, Janzen DH, Hallwachs W. Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc Natl Acad Sci U S A. 2004;101(41):14812-7. https://doi.org/10.1073/pnas.0406166101.
  42. Hebert PD, Ratnasingham S, deWaard JR. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc Biol Sci. 2003;270(Suppl 1):S96-9. https://doi.org/10.1098/rsbl.2003.0025.
  43. Hegland SJ, Nielsen A, Lazaro A, Bjerknes AL, Totland O. How does climate warming affect plant-pollinator interactions? Ecol Lett. 2009;12(2):184-95. https://doi.org/10.1111/j.1461-0248.2008.01269.x.
  44. Hu Y, Zhang Q, Rao G, Sodmergen. Occurrence of plastids in the sperm cells of Caprifoliaceae: biparental plastid inheritance in angiosperms is unilaterally derived from maternal inheritance. Plant Cell Physiol. 2008;49(6):958-68. https://doi.org/10.1093/pcp/pcn069.
  45. Isbell F, Calcagno V, Hector A, Connolly J, Harpole WS, Reich PB, et al. High plant diversity is needed to maintain ecosystem services. Nature. 2011;477(7363):199-202. https://doi.org/10.1038/nature10282.
  46. Jordano P, Bascompte J, Olesen JM. The ecological consequences of complex topology and nested structure in pollination webs. In: Waser NM, Ollerton J, editors. Specialization and generalization in plant-pollinator interactions. Chicago: University of Chicago Press; 2006. p. 173-99.
  47. Kaiser-Bunbury CN, Muff S, Memmott J, Muller CB, Caflisch A. The robustness of pollination networks to the loss of species and interactions: a quantitative approach incorporating pollinator behaviour. Ecol Lett. 2010;13(4):442-52. https://doi.org/10.1111/j.1461-0248.2009.01437.x.
  48. Keller A, Danner N, Grimmer G, Ankenbrand M, von der Ohe K, von der Ohe W, et al. Evaluating multiplexed next-generation sequencing as a method in palynology for mixed pollen samples. Plant Biol (Stuttg). 2015;17(2):558-66. https://doi.org/10.1111/plb.12251.
  49. Khansari E, Zarre S, Alizadeh K, Attar F, Aghabeigi F, Salmaki Y. Pollen morphology of Campanula (Campanulaceae) and allied genera in Iran with special focus on its systematic implication. Flora. 2012;207(3):203-11. https://doi.org/10.1016/j.flora.2012.01.006.
  50. Khansaritoreh E, Salmaki Y, Ramezani E, Akbari Azirani T, Keller A, Neumann K, et al. Employing DNA metabarcoding to determine the geographical origin of honey. Heliyon. 2020;6(11):e05596. https://doi.org/10.1016/j.heliyon.2020.e05596.
  51. King C, Ballantyne G, Willmer PG. Why flower visitation is a poor proxy for pollination: measuring single-visit pollen deposition, with implications for pollination networks and conservation. Methods Ecol Evol. 2013;4(9):811-8. https://doi.org/10.1111/2041-210X.12074.
  52. Klein AM, Vaissiere BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, et al. Importance of pollinators in changing landscapes for world crops. Proc Biol Sci. 2007;274(1608):303-13. https://doi.org/10.1098/rspb.2006.3721.
  53. Kraaijeveld K, de Weger LA, Ventayol Garcia M, Buermans H, Frank J, Hiemstra PS, et al. Efficient and sensitive identification and quantification of airborne pollen using next-generation DNA sequencing. Mol Ecol Resour. 2015;15(1):8-16. https://doi.org/10.1111/1755-0998.12288.
  54. Laha RC, De Mandal S, Ralte L, Ralte L, Kumar NS, Gurusubramanian G, et al. Meta-barcoding in combination with palynological inference is a potent diagnostic marker for honey floral composition. AMB Express. 2017;7(1):132. https://doi.org/10.1186/s13568-017-0429-7. Erratum in: AMB Express. 2017;7(1):189.
  55. Leontidou K, Vernesi C, De Groeve J, Cristofolini F, Vokou D, Cristofori A. DNA metabarcoding of airborne pollen: new protocols for improved taxonomic identification of environmental samples. Aerobiologia. 2018;34(1):63-74. https://doi.org/10.1007/s10453-017-9497-z.
  56. Lopezaraiza-Mikel ME, Hayes RB, Whalley MR, Memmott J. The impact of an alien plant on a native plant-pollinator network: an experimental approach. Ecol Lett. 2007;10(7):539-50. https://doi.org/10.1111/j.1461-0248.2007.01055.x.
  57. Lucas A, Bodger O, Brosi BJ, Ford CR, Forman DW, Greig C, et al. Floral resource partitioning by individuals within generalised hoverfly pollination networks revealed by DNA metabarcoding. Sci Rep. 2018;8(1):5133. https://doi.org/10.1038/s41598-018-23103-0.
  58. McGinnis S, Madden TL. BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res. 2004;32(Web Server issue):W20-5. https://doi.org/10.1093/nar/gkh435.
  59. Memmott J, Waser NM, Price MV. Tolerance of pollination networks to species extinctions. Proc Biol Sci. 2004;271(1557):2605-11. https://doi.org/10.1098/rspb.2004.2909.
  60. Mohamadzade Namin S, Jung C. Genetic diversity of genus Vespa including an invaded species of V. velutina (Hymenoptera: Vespidae) in Korea inferred from DNA barcoding data. J Asia-Pac Entomol. 2020;23(2):540-5. https://doi.org/10.1016/j.aspen.2020.04.004.
  61. Mohamadzade Namin S, Park TY, Jung C, Meyer-Rochow VB. Molecular characteristics of Bombus (Alpinobombus) polaris from North Greenland with comments on its general biology and phylogeography. Polar Biol. 2021;44:2209-16. https://doi.org/10.1007/s00300-021-02952-y.
  62. Moorhouse-Gann RJ, Dunn JC, de Vere N, Goder M, Cole N, Hipperson H, et al. New universal ITS2 primers for high-resolution herbivory analyses using DNA metabarcoding in both tropical and temperate zones. Sci Rep. 2018;8(1):8542. https://doi.org/10.1038/s41598-018-26648-2.
  63. Nagata N, Saito C, Sakai A, Kuroiwa H, Kuroiwa T. The selective increase or decrease of organellar DNA in generative cells just after pollen mitosis one controls cytoplasmic inheritance. Planta. 1999; 209(1):53-65. https://doi.org/10.1007/s004250050606.
  64. Novella-Fernandez R, Rodrigo A, Arnan X, Bosch J. Interaction strength in plant-pollinator networks: are we using the right measure? PLoS One. 2019;14(12):e0225930. https://doi.org/10.1371/journal.pone.0225930.
  65. Olesen JM, Bascompte J, Dupont YL, Jordano P. The modularity of pollination networks. Proc Natl Acad Sci U S A. 2007;104(50):19891-6. https://doi.org/10.1073/pnas.0706375104.
  66. Ollerton J, Winfree R, Tarrant S. How many flowering plants are pollinated by animals? Oikos. 2011;120(3):321-6. https://doi.org/10.1111/j.1600-0706.2010.18644.x.
  67. Parducci L, Nota K, Tinner W, van Leeuwen J, van der Knaap P, Sachse D, et al. Shotgun DNA, pollen and biological multi-proxy analysis of Lateglacial lake sediments from Monticchio, Italy. Gottingen: EGU General Assembly; 2020.
  68. Peel N, Dicks LV, Clark MD, Heavens D, Percival-Alwyn L, Cooper C, et al. Semi-quantitative characterisation of mixed pollen samples using MinION sequencing and Reverse Metagenomics (RevMet). Methods Ecol Evol. 2019;10(10):1690-701. https://doi.org/10.1111/2041-210X.13265.
  69. Pocock MJ, Evans DM, Memmott J. The robustness and restoration of a network of ecological networks. Science. 2012;335(6071):973-7. https://doi.org/10.1126/science.1214915.
  70. Pornon A, Andalo C, Burrus M, Escaravage N. DNA metabarcoding data unveils invisible pollination networks. Sci Rep. 2017;7(1):16828. https://doi.org/10.1038/s41598-017-16785-5.
  71. Pornon A, Escaravage N, Burrus M, Holota H, Khimoun A, Mariette J, et al. Using metabarcoding to reveal and quantify plant-pollinator interactions. Sci Rep. 2016;6:27282. https://doi.org/10.1038/srep27282.
  72. Potter C, de Vere N, Jones LE, Ford CR, Hegarty MJ, Hodder KH, et al. Pollen metabarcoding reveals broad and species-specific resource use by urban bees. PeerJ. 2019;7:e5999. https://doi.org/10.7717/peerj.5999.
  73. Richardson RT, Curtis HR, Matcham EG, Lin CH, Suresh S, Sponsler DB, et al. Quantitative multi-locus metabarcoding and waggle dance interpretation reveal honey bee spring foraging patterns in Midwest agroecosystems. Mol Ecol. 2019;28(3):686-97. https://doi.org/10.1111/mec.14975.
  74. Richardson RT, Lin CH, Quijia JO, Riusech NS, Goodell K, Johnson RM. Rank-based characterization of pollen assemblages collected by honey bees using a multi-locus metabarcoding approach. Appl Plant Sci. 2015b;3(11):apps.1500043. https://doi.org/10.3732/apps.1500043.
  75. Richardson RT, Lin CH, Sponsler DB, Quijia JO, Goodell K, Johnson RM. Application of ITS2 metabarcoding to determine the provenance of pollen collected by honey bees in an agroecosystem. Appl Plant Sci. 2015a;3(1):apps.1400066. https://doi.org/10.3732/apps.1400066.
  76. Robeson MS, O'Rourke DR, Kaehler BD, Ziemski M, Dillon MR, Foster JT, et al. RESCRIPt: Reproducible sequence taxonomy reference database management. PLoS Comput Biol. 2021;17(11):e1009581. doi: 10.1371/journal.pcbi.1009581.
  77. Seo E, Hutchinson RA. Predicting links in plant-pollinator interaction networks using latent factor models with implicit feedback. Proceed AAAI Conf Artif Intell. 2018;32(1):808-15.
  78. Shokralla S, Spall JL, Gibson JF, Hajibabaei M. Next-generation sequencing technologies for environmental DNA research. Mol Ecol. 2012;21(8):1794-805. https://doi.org/10.1111/j.1365-294x.2012.05538.x.
  79. Sickel W, Ankenbrand MJ, Grimmer G, Holzschuh A, Hartel S, Lanzen J, et al. Increased efficiency in identifying mixed pollen samples by meta-barcoding with a dual-indexing approach. BMC Ecol. 2015;15:20. https://doi.org/10.1186/s12898-015-0051-y.
  80. Smart MD, Cornman RS, Iwanowicz DD, McDermott-Kubeczko M, Pettis JS, Spivak MS, et al. A comparison of honey bee-collected pollen from working agricultural lands using light microscopy and ITS metabarcoding. Environ Entomol. 2017;46(1):38-49. https://doi.org/10.1093/ee/nvw159.
  81. Son M, Jung S, Jung C. Diversity and interaction of pollination network from agricultural ecosystems during summer. J Apic. 2019;34(3):197-206. https://doi.org/10.17519/apiculture.2019.09.34.3.197.
  82. Srivathsan A, Ang A, Vogler AP, Meier R. Fecal metagenomics for the simultaneous assessment of diet, parasites, and population genetics of an understudied primate. Front Zool. 2016;13:17. https://doi.org/10.1186/s12983-016-0150-4.
  83. Staniczenko PP, Kopp JC, Allesina S. The ghost of nestedness in ecological networks. Nat Commun. 2013;4:1391. https://doi.org/10.1038/ncomms2422.
  84. Swenson SJ, Gemeinholzer B. Testing the effect of pollen exine rupture on metabarcoding with Illumina sequencing. PLoS One. 2021;16(2):e0245611. https://doi.org/10.1371/journal.pone.0245611.
  85. Taberlet P, Coissac E, Pompanon F, Brochmann C, Willerslev E. Towards next-generation biodiversity assessment using DNA metabarcoding. Mol Ecol. 2012;21(8):2045-50. https://doi.org/10.1111/j.1365-294x.2012.05470.x.
  86. Tylianakis JM, Morris RJ. Ecological networks across environmental gradients. Annu Rev Ecol Evol Syst. 2017;48:25-48. https://doi.org/10.1146/annurev-ecolsys-110316-022821.
  87. Tylianakis JM. Ecology. The global plight of pollinators. Science. 2013;339(6127):1532-3. https://doi.org/10.1126/science.1235464.
  88. Ulanowicz RE. Quantitative methods for ecological network analysis. Comput Biol Chem. 2004;28(5-6):321-39. https://doi.org/10.1016/j.compbiolchem.2004.09.001.
  89. Valdovinos FS, Moisset de Espanes P, Flores JD, Ramos-Jiliberto R. Adaptive foraging allows the maintenance of biodiversity of pollination networks. Oikos. 2013;122(6):907-17. https://doi.org/10.1111/j.1600-0706.2012.20830.x.
  90. Vanbergen AJ, Woodcock BA, Heard MS, Chapman DS. Network size, structure and mutualism dependence affect the propensity for plant-pollinator extinction cascades. Funct Ecol. 2017;31(6):1285-93. https://doi.org/10.1111/1365-2435.12823.
  91. Vanbergen AJ; Insect Pollinators Initiative. Threats to an ecosystem service: pressures on pollinators. Front Ecol Environ. 2013;11(5):251-9. https://doi.org/10.1890/120126.
  92. Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73(16):5261-7. https://doi.org/10.1128/aem.00062-07.
  93. Weiner CN, Werner M, Linsenmair KE, Bluthgen N. Land-use impacts on plant-pollinator networks: interaction strength and specialization predict pollinator declines. Ecology. 2014;95(2):466-74. https://doi.org/10.1890/13-0436.1.
  94. Weiner CN, Werner M, Linsenmair KE, Bluthgen N. Land use intensity in grasslands: changes in biodiversity, species composition and specialisation in flower visitor networks. Basic Appl Ecol. 2011;12(4):292-9. https://doi.org/10.1016/j.baae.2010.08.006.
  95. Yohe S, Thyagarajan B. Review of clinical next-generation sequencing. Arch Pathol Lab Med. 2017;141(11):1544-57. https://doi.org/10.5858/arpa.2016-0501-ra.
  96. Yu DW, Ji Y, Emerson BC, Wang X, Ye C, Yang C, et al. Biodiversity soup: metabarcoding of arthropods for rapid biodiversity assessment and biomonitoring. Methods Ecol Evol. 2012;3(4):613-23. https://doi.org/10.1111/j.2041-210X.2012.00198.x.
  97. Zhang Q, Liu Y, Sodmergen. Examination of the cytoplasmic DNA in male reproductive cells to determine the potential for cytoplasmic inheritance in 295 angiosperm species. Plant Cell Physiol. 2003;44(9):941-51. https://doi.org/10.1093/pcp/pcg121.
  98. Zhang Q, Sodmergen. Why does biparental plastid inheritance revive in angiosperms? J Plant Res. 2010;123(2):201-6. https://doi.org/10.1007/s10265-009-0291-z.
  99. Zhou X, Li Y, Liu S, Yang Q, Su X, Zhou L, et al. Ultra-deep sequencing enables high-fidelity recovery of biodiversity for bulk arthropod samples without PCR amplification. Gigascience. 2013;2(1):4. https://doi.org/10.1186/2047-217x-2-4.