DOI QR코드

DOI QR Code

Peroxiredoxin 6 Overexpression Induces Anxiolytic and Depression-Like Behaviors by Regulating the Serotonergic Pathway in Mice

  • Gu, Sun Mi (College of Pharmacy and Medical Research Center, Chungbuk National University) ;
  • Yu, Eunhye (College of Pharmacy and Medical Research Center, Chungbuk National University) ;
  • Kim, Young Eun (College of Pharmacy and Medical Research Center, Chungbuk National University) ;
  • Yoon, Seong Shoon (College of Korean Medicine, Daegu Haany University) ;
  • Lee, Dohyun (Laboratory Animal Center, Osong Medical Innovation Foundation) ;
  • Hong, Jin Tae (College of Pharmacy and Medical Research Center, Chungbuk National University) ;
  • Yun, Jaesuk (College of Pharmacy and Medical Research Center, Chungbuk National University)
  • Received : 2021.11.02
  • Accepted : 2022.03.05
  • Published : 2022.07.01

Abstract

Peroxiredoxin 6 (PRDX6) is a bifunctional protein with both glutathione peroxidase and calcium-independent phospholipase activity. Recently, we reported that PRDX6 plays an important role in dopaminergic neurodegeneration in Parkinson's disease. However, the relationship between PRDX6 function and emotional behavior remains elusive. In the present study, we examined depression- and anxiety-like behaviors in PRDX6-overexpressing transgenic (PRDX6-Tg) mice using the forced swim test, tail suspension test, open field paradigm, and elevated plus-maze. PRDX6-Tg mice exhibited depression-like behaviors and low anxiety. In particular, female PRDX6-Tg mice exhibited anxiolytic behavior in the open field test. Furthermore, the serotonin content in the cortex and 5-hydroxytryptophan-induced head twitch response were both reduced in PRDX6-Tg mice. Interestingly, levels of dopa decarboxylase expression in the cortex were decreased in male PRDX6-Tg mice but not in female mice. Our findings provide novel insights into the role of PRDX6 in 5-HT synthesis and suggest that PRDX6 overexpression can induce depression-like behaviors via downregulation of the serotonergic neuronal system.

Keywords

Acknowledgement

This work was supported by the Ministry of Food and Drug Safety (20182MFDS422, 20182MFDS425), the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. MRC, 2017R1A5A2015541), "Regional Innovation Strategy (RIS)" through the NRF funded by the Ministry of Education (2021RIS-001), and Basic Science Research Program through the NRF funded by the Ministry of Education (NRF-2021R1I1A1A01058188).

References

  1. Balasinor, N. H., D'souza, R., Nanaware, P., Idicula-Thomas, S., Kedia-Mokashi, N., He, Z. and Dym, M. (2010) Effect of high intratesticular estrogen on global gene expression and testicular cell number in rats. Reprod. Biol. Endocrinol. 8, 72. https://doi.org/10.1186/1477-7827-8-72
  2. Birzniece, V., Johansson, I. M., Wang, M. D., Backstrom, T. and Olsson, T. (2002) Ovarian hormone effects on 5-hydroxytryptamine (2A) and 5-hydroxytryptamine (2C) receptor mRNA expression in the ventral hippocampus and frontal cortex of female rats. Neurosci. Lett. 319, 157-161. https://doi.org/10.1016/S0304-3940(01)02570-8
  3. Buonora, J. E., Mousseau, M., Jacobowitz, D. M., Lazarus, R. C., Yarnell, A. M., Olsen, C. H., Pollard, H. B., Diaz-Arrastia, R., Latour, L. and Mueller, G. P. (2015) Autoimmune profiling reveals peroxiredoxin 6 as a candidate traumatic brain injury biomarker. J. Neurotrauma 32, 1805-1814. https://doi.org/10.1089/neu.2014.3736
  4. Can, A., Dao, D. T., Arad, M., Terrillion, C. E., Piantadosi, S. C. and Gould, T. D. (2012) The mouse forced swim test. J. Vis. Exp. (59), e3638.
  5. Canal, C. E. and Morgan, D. (2012) Head-twitch response in rodents induced by the hallucinogen 2,5-dimethoxy-4-iodoamphetamine: a comprehensive history, a re-evaluation of mechanisms, and its utility as a model. Drug Test. Anal. 4, 556-576. https://doi.org/10.1002/dta.1333
  6. Canal, C. E., Olaghere Da Silva, U. B., Gresch, P. J., Watt, E. E., Sanders-Bush, E. and Airey, D. C. (2010) The serotonin 2C receptor potently modulates the head-twitch response in mice induced by a phenethylamine hallucinogen. Psychopharmacology (Berl.) 209, 163-174. https://doi.org/10.1007/s00213-010-1784-0
  7. Chae, H. Z., Robison, K., Poole, L. B., Church, G., Storz, G. and Rhee, S. G. (1994) Cloning and sequencing of thiol-specific antioxidant from mammalian brain: alkyl hydroperoxide reductase and thiol-specific antioxidant define a large family of antioxidant enzymes. Proc. Natl. Acad. Sci. U.S.A. 91, 7017-7021. https://doi.org/10.1073/pnas.91.15.7017
  8. Colpaert, F. C. and Janssen, P. A. (1983) The head-twitch response to intraperitoneal injection of 5-hydroxytryptophan in the rat: antagonist effects of purported 5-hydroxytryptamine antagonists and of pirenperone, an LSD antagonist. Neuropharmacology 22, 993-1000. https://doi.org/10.1016/0028-3908(83)90215-0
  9. Corne, S. J., Pickering, R. W. and Warner, B. T. (1963) A method for assessing the effects of drugs on the central actions of 5-hydroxytryptamine. Br. J. Pharmacol. Chemother. 20, 106-120. https://doi.org/10.1111/j.1476-5381.1963.tb01302.x
  10. Crawley, J. N. (1999) Behavioral phenotyping of transgenic and knockout mice: experimental design and evaluation of general health, sensory functions, motor abilities, and specific behavioral tests. Brain Res. 835, 18-26. https://doi.org/10.1016/S0006-8993(98)01258-X
  11. Cryan, J. F., Mombereau, C. and Vassout, A. (2005) The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice. Neurosci. Biobehav. Rev. 29, 571-625. https://doi.org/10.1016/j.neubiorev.2005.03.009
  12. Darmani, N. A. (1996) Differential potentiation of L-tryptophan-induced head-twitch response in mice by cocaine and sertraline. Life Sci. 59, 1109-1119. https://doi.org/10.1016/0024-3205(96)00428-6
  13. Fisher, A. B., Dodia, C., Manevich, Y., Chen, J. W. and Feinstein, S. I. (1999) Phospholipid hydroperoxides are substrates for non-selenium glutathione peroxidase. J. Biol. Chem. 274, 21326-21334. https://doi.org/10.1074/jbc.274.30.21326
  14. Hillhouse, T. M. and Porter, J. H. (2015) A brief history of the development of antidepressant drugs: from monoamines to glutamate. Exp. Clin. Psychopharmacol. 23, 1-21. https://doi.org/10.1037/a0038550
  15. Jacobsen, J. P., Medvedev, I. O. and Caron, M. G. (2012) The 5-HT deficiency theory of depression: perspectives from a naturalistic 5-HT deficiency model, the tryptophan hydroxylase 2Arg439His knockin mouse. Philos. Trans. R. Soc. Lond. B Biol. Sci. 367, 2444-2459. https://doi.org/10.1098/rstb.2012.0109
  16. Kasahara, T., Kubota, M., Miyauchi, T., Noda, Y., Mouri, A., Nabeshima, T. and Kato, T. (2006) Mice with neuron-specific accumulation of mitochondrial DNA mutations show mood disorder-like phenotypes. Mol. Psychiatry 11, 577-593. https://doi.org/10.1038/sj.mp.4001824
  17. Lister, R. G. (1987) The use of a plus-maze to measure anxiety in the mouse. Psychopharmacology (Berl.) 92, 180-185. https://doi.org/10.1007/BF00177912
  18. Lopatina, O., Yoshihara, T., Nishimura, T., Zhong, J., Akther, S., Fakhrul, A. A., Liang, M., Higashida, C., Sumi, K., Furuhara, K., Inahata, Y., Huang, J. J., Koizumi, K., Yokoyama, S., Tsuji, T., Petugina, Y., Sumarokov, A., Salmina, A. B., Hashida, K., Kitao, Y., Hori, O., Asano, M., Kitamura, Y., Kozaka, T., Shiba, K., Zhong, F., Xie, M. J., Sato, M., Ishihara, K. and Higashida, H. (2014) Anxiety- and depression-like behavior in mice lacking the CD157/BST1 gene, a risk factor for Parkinson's disease. Front. Behav. Neurosci. 8, 133. https://doi.org/10.3389/fnbeh.2014.00133
  19. Manevich, Y., Feinstein, S. I. and Fisher, A. B. (2004) Activation of the antioxidant enzyme 1-CYS peroxiredoxin requires glutathionylation mediated by heterodimerization with pi GST. Proc. Natl. Acad. Sci. U.S.A. 101, 3780-3785. https://doi.org/10.1073/pnas.0400181101
  20. Mchedlidze, O., Dzadzamia, S., Butskhrikidze, M., Tsomaia, V. and Nachkebia, N. (2011) Changes of locomotor, exploratory and emotional behavior in animal model of depression induced by deficiency of brain monoamine content. Georgian Med. News 198, 76-82.
  21. Millevoi, S., Thion, L., Joseph, G., Vossen, C., Ghisolfi-Nieto, L. and Erard, M. (2001) Atypical binding of the neuronal POU protein NOct3 to noncanonical DNA targets. Implications for heterodimerization with HNF-3 beta. Eur. J. Biochem. 268, 781-791. https://doi.org/10.1046/j.1432-1327.2001.01934.x
  22. Miyamoto, Y., Yamada, K., Noda, Y., Mori, H., Mishina, M. and Nabeshima, T. (2002) Lower sensitivity to stress and altered monoaminergic neuronal function in mice lacking the NMDA receptor epsilon 4 subunit. J. Neurosci. 22, 2335-2342. https://doi.org/10.1523/jneurosci.22-06-02335.2002
  23. Mouri, A., Sasaki, A., Watanabe, K., Sogawa, C., Kitayama, S., Mamiya, T., Miyamoto, Y., Yamada, K., Noda, Y. and Nabeshima, T. (2012) MAGE-D1 regulates expression of depression-like behavior through serotonin transporter ubiquitylation. J. Neurosci. 32, 4562-4580. https://doi.org/10.1523/JNEUROSCI.6458-11.2012
  24. Murai, R., Noda, Y., Matsui, K., Kamei, H., Mouri, A., Matsuba, K., Nitta, A., Furukawa, H. and Nabeshima, T. (2007) Hypofunctional glutamatergic neurotransmission in the prefrontal cortex is involved in the emotional deficit induced by repeated treatment with phencyclidine in mice: implications for abnormalities of glutamate release and NMDA-CaMKII signaling. Behav. Brain Res. 180, 152-160. https://doi.org/10.1016/j.bbr.2007.03.003
  25. Nabeshima, T., Hiramatsu, M., Niwa, K., Fuji, K. and Kameyama, T. (1992) Effect of naftidrofuryl oxalate on 5-HT2 receptors in mouse brain: evaluation based on quantitative autoradiography and headtwitch response. Eur. J. Pharmacol. 223, 109-115. https://doi.org/10.1016/0014-2999(92)94828-J
  26. Ng, J., Heales, S. J. and Kurian, M. A. (2014) Clinical features and pharmacotherapy of childhood monoamine neurotransmitter disorders. Paediatr. Drugs 16, 275-291. https://doi.org/10.1007/s40272-014-0079-z
  27. Nic Dhonnchadha, B. A., Bourin, M. and Hascoet, M. (2003) Anxiolyticlike effects of 5-HT2 ligands on three mouse models of anxiety. Behav. Brain Res. 140, 203-214. https://doi.org/10.1016/S0166-4328(02)00311-X
  28. Oliviero, G., Munawar, N., Watson, A., Streubel, G., Manning, G., Bardwell, V., Bracken, A. P. and Cagney, G. (2015) The variant Polycomb Repressor Complex 1 component PCGF1 interacts with a pluripotency sub-network that includes DPPA4, a regulator of embryogenesis. Sci. Rep. 5, 18388. https://doi.org/10.1038/srep18388
  29. Owens, M. J. and Nemeroff, C. B. (1994) Role of serotonin in the pathophysiology of depression: focus on the serotonin transporter. Clin. Chem. 40, 288-295. https://doi.org/10.1093/clinchem/40.2.288
  30. Porsolt, R. D., Le Pichon, M. and Jalfre, M. (1977) Depression: a new animal model sensitive to antidepressant treatments. Nature 266, 730-732. https://doi.org/10.1038/266730a0
  31. Rosenzweig-Lipson, S. (2011) New horizons for selective 5-HT2C receptor ligands in psychiatric/neurological disorders. Neuropsychopharmacology 36, 363-364. https://doi.org/10.1038/npp.2010.168
  32. Schreiber, R., Brocco, M., Audinot, V., Gobert, A., Veiga, S. and Millan, M. J. (1995) (1-(2,5-dimethoxy-4 iodophenyl)-2-aminopropane)-induced head-twitches in the rat are mediated by 5-hydroxytryptamine (5-HT) 2A receptors: modulation by novel 5-HT2A/2C antagonists, D1 antagonists and 5-HT1A agonists. J. Pharmacol. Exp. Ther. 273, 101-112.
  33. Siu, W. K. (2015) Genetics of monoamine neurotransmitter disorders. Transl. Pediatr. 4, 175-180.
  34. Steru, L., Chermat, R., Thierry, B. and Simon, P. (1985) The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology (Berl.) 85, 367-370. https://doi.org/10.1007/BF00428203
  35. Stockmeier, C. A. (2003) Involvement of serotonin in depression: evidence from postmortem and imaging studies of serotonin receptors and the serotonin transporter. J. Psychiatr. Res. 37, 357-373. https://doi.org/10.1016/S0022-3956(03)00050-5
  36. Tomida, S., Mamiya, T., Sakamaki, H., Miura, M., Aosaki, T., Masuda, M., Niwa, M., Kameyama, T., Kobayashi, J., Iwaki, Y., Imai, S., Ishikawa, A., Abe, K., Yoshimura, T., Nabeshima, T. and Ebihara, S. (2009) Usp46 is a quantitative trait gene regulating mouse immobile behavior in the tail suspension and forced swimming tests. Nat. Genet. 41, 688-695. https://doi.org/10.1038/ng.344
  37. Vaccarino, V., Brennan, M. L., Miller, A. H., Bremner, J. D., Ritchie, J. C., Lindau, F., Veledar, E., Su, S., Murrah, N. V., Jones, L., Jawed, F., Dai, J., Goldberg, J. and Hazen, S. L. (2008) Association of major depressive disorder with serum myeloperoxidase and other markers of inflammation: a twin study. Biol. Psychiatry 64, 476-483. https://doi.org/10.1016/j.biopsych.2008.04.023
  38. Yun, H. M., Choi, D. Y., Oh, K. W. and Hong, J. T. (2015) PRDX6 exacerbates dopaminergic neurodegeneration in a MPTP mouse model of Parkinson's disease. Mol. Neurobiol. 52, 422-431. https://doi.org/10.1007/s12035-014-8885-4
  39. Zou, J., Weng, R. H., Chen, Z. Y., Wei, X. B., Wang, R., Chen, D., Xia, Y. and Wang, Q. (2016) Position emission tomography/single-photon emission tomography neuroimaging for detection of premotor Parkinson's disease. CNS Neurosci. Ther. 22, 167-177. https://doi.org/10.1111/cns.12493