DOI QR코드

DOI QR Code

Seasonal changes in phytoplankton community related with environmental factors in the Busan coastal region in 2014

2014년 부산 연안 해역에서 계절적 환경특성에 따른 식물플랑크톤 군집의 변화양상

  • JI Nam Yoon (Risk Assessment Research Center, Korea Institute of Ocean Science & Technology) ;
  • Young Kyun Lim (Risk Assessment Research Center, Korea Institute of Ocean Science & Technology) ;
  • Dong Sun Kim (Marine Environmental Research Center, Korea Institute of Ocean Science & Technology) ;
  • Young Ok Kim (Marine Ecosystem Research Center, Korea Institute of Ocean Science & Technology) ;
  • Seung Ho Baek (Risk Assessment Research Center, Korea Institute of Ocean Science & Technology)
  • 윤지남 (한국해양과학기술원 위해성분석연구센터) ;
  • 임영균 (한국해양과학기술원 위해성분석연구센터) ;
  • 김동선 (한국해양과학기술원 해양환경연구센터) ;
  • 김영옥 (한국해양과학기술원 해양생태연구센터) ;
  • 백승호 (한국해양과학기술원 위해성분석연구센터)
  • Received : 2022.01.11
  • Accepted : 2022.03.17
  • Published : 2022.03.31

Abstract

To assess the influence of environmental factors on the phytoplankton community structure and total phytoplankton biomass during four seasons in 2014, we investigated the abiotic and biotic factors at 25 stations in the Busan coastal region. The phytoplankton community and total phytoplankton biomass were strongly dependent on the discharge from the Nakdong River, and the high density of phytoplankton was related with the introduction of the Tsushima Warm Current (TWC), particularly in the thermohaline fronts of the fall season. The relationship between the salinity and nutrient (Dissolved inorganic nitrogen=DIN: R2=0.72, p<0.001 and Dissolved inorganic silicon=DSi: R2=0.78, p<0.001) highly correlated with the river discharge, implying that those nutrients have played a crucial role in the growth of diatom and cryptophyta. The total phytoplankton biomass was highest in the summer followed by autumn, spring, and winter. Diatom and cryptophyta species were dominant species during the four seasons. Additionally, there were strong positive correlations between Chlorophyll a and total phytoplankton biomass (R2=0.84, p<0.001), cryptophyta (R2=0.76, p<0.001) and diatom (R2=0.50, p<0.001), respectively. In particular, we found that there were significant differences in the nutrients, phytoplankton community compositions, and total phytoplankton biomass between the inner and the outer coastal region of Busan, depending on the amount of river discharge from the Nakdong River, particularly during rainy seasons. Therefore, the seasonal change of TWC and river discharge from the Nakdong River serve an important role in determining phytoplankton population dynamics in the Busan coastal region.

본 연구는 2014년 동계, 춘계, 하계, 추계 부산 연안 해역에서 식물플랑크톤 군집구조와 그들의 성장에 미치는 환경요인을 파악하기 위해 25개의 정점에서 생물학적 요인과 무생물학적 요인을 조사하였다. 부산 연안 해역에서 식물플랑크톤의 현존량 및 군집조성은 강우에 의한 낙동강 방류수에 크게 의존되는 특성과 더불어, 염분 분포가 생물의 집적에 중요하게 작용하는 것으로 파악됐다. 염분은 영양염 DIN (R2=0.72, p<0.001) 및 DSi (R2=0.78, p<0.001)와 유의한 상관관계를 확인하였으나, DIP (R2=0.037, p>0.05)는 염분과 유의한 관계성은 없었다. 이는 2014년 하계 강우에 의한 연안역으로 담수의 유입은 질소와 규소기원의 영양염 공급을 초래하였고, 식물플랑크톤 중 규조류와 은편모조류의 증식에 중요하게 작용하였다. 계절적으로 식물플랑크톤의 현존량은 하계, 추계, 춘계, 동계 순으로 높게 나타났다. Chl. a 농도에 대한 기여율은 식물플랑크톤의 총 현존량과 높은 양의 상관관계(R2=0.84, p<0.001)를 보였고, 그중에서도 은편모조류(R2=0.76, p<0.001) 및 규조류(R2=0.50, p<0.001)의 기여율이 상대적으로 높게 나타난 것을 파악하였다. 결과적으로 부산 연안 해역은 낙동강 하구와 부산 도심 및 항만기원의 유기물 부하로, 식물플랑크톤의 증식이 빠르게 일어날 수 있는 환경변화를 파악하였다. 특히, 내측과 외측은 영양염 농도뿐만 아니라, 식물플랑크톤의 군집구조 및 현존량의 차이도 크게 나타났고, 이는 계절적으로 상이한 특성을 보였다.

Keywords

Acknowledgement

본 연구는 한국해양과학기술원 연구과제 "생지화학 순환 및 해양환경변동 연구(PEA0012)" 지원으로 수행되었습니다.

References

  1. Bae SW, DS Kim, YO Kim, CH Moon and SH Baek. 2014. The influences of additional nutrients on phytoplankton growth and horizontal phytoplankton community distribution during the autumn season in Gwangyang Bay, Korea. Korean J. Environ. Biol. 32:35-48. https://doi.org/10.11626/KJEB.2014.32.1.035
  2. Baek SH, DS Kim, MH Son, SM Yun and YO Kim. 2015. Seasonal distribution of phytoplankton assemblages and nutrient-enriched bioassays as indicators of nutrient limitation of phytoplankton growth in Gwangyang Bay, Korea. Estuar. Coast. Shelf Sci. 163:265-278. https://doi.org/10.1016/j.ecss.2014.12.035
  3. Baek SH, DS Kim, YO Kim, MH Son, YJ Kim, MJ Lee and BS Park. 2019. Seasonal changes in abiotic environmental conditions in the Busan coastal region (South Korea) due to the Nakdong River in 2013 and effect of these changes on phytoplankton communities. Cont. Shelf Res. 175:116-126. https://doi.org/10.1016/j.csr.2019.01.014
  4. Barone R and L Naselli-Flores. 2003. Distribution and seasonal dynamics of Cryptomonads in Sicilian water bodies. Hydrobiologia 502:325-329. https://doi.org/10.1023/B:HYDR.0000004290.22289.c2
  5. Clay BL, P Kugrens and RE Lee. 1999. A revised classification of Cryptophyta. Bot. J. Linn. Soc. 131:131-151. https://doi.org/10.1111/j.1095-8339.1999.tb01845.x
  6. Hasle GR. 1973. Morphology and taxonomy of Skeletonema costaum(Bacillariophyceae). Nor. J. Bot. 20:109-137.
  7. Jang PG, BG Hyun, HG Cha, HS Chung, MC Jang and KS Shin. 2013a. Seasonal variation of phytoplankton assemblages related to surface water mass in the Eastern part of the South Sea in Korea. Ocean Polar Res. 35:157-170. https://doi.org/10.4217/OPR.2013.35.2.157
  8. Jang PG, HH Shin, SH Baek, MC Jang, TS Lee and K Shin. 2013b. Nutrient distribution and effects on phytoplankton assemblages in the western Korea/Tsushima Strait. N. Z. J. Mar. Freshw. Res. 47:21-37. https://doi.org/10.1080/00288330.2012.718284
  9. Jang PG, WJ Lee, MC Jang, JD Lee, WJ Lee, M Chang, KC Hwang and KS Shin. 2005. Spatial and temporal distribution of inorganic nutrients and factors controlling their distributions in Gwangyang Bay. Ocean Polar Res. 27:359-379. https://doi.org/10.4217/OPR.2005.27.4.359
  10. Jung DH, HH Shin, SW Jung and DI Lim. 2013. Variations and characters of water quality during flood and dry seasons in the Eastern Coast of South Sea, Korea. Korean J. Environ. Biol. 31:19-36. https://doi.org/10.11626/KJEB.2013.31.1.019
  11. Jung SW, OY Kwon and JH Lee. 2008. Variation and relationship between standing crops and biomass of phytoplankton domiant species in the marine ranching ground of Tongyeong coastal waters from 2000 to 2007. Algae 23:53-61. https://doi.org/10.4490/ALGAE.2008.23.1.053
  12. Justic D, NN Rabalais, RE Turner and Q Dortch. 1995. Changes in nutrient structure of river-dominated coastal waters: stoichiometric nutrient balance and its consequences. Estuar. Coast. Shelf Sci. 40:339-356. https://doi.org/10.1016/S0272-7714(05)80014-9
  13. Kim AR, SH Youn, MH Chung, SC Yoon and CH Moon. 2014. The influences of coastal upwelling on phytoplankton community in the southern part of East Sea, Korea. The Sea 19:287-301. https://doi.org/10.7850/JKSO.2014.19.4.287
  14. Kim BH, DH Won and YJ Kim. 2012. Spring bloom of Skeletonema costatum and lake trophic status in the Hwajinpo Lagoon, South Korea. Korea. J. Ecol. Environ. 45:329-339.
  15. Kim KC, HS Yang, CK Kim, CH Moon and ST Jang. 1999. Variations of physical oceanographic environment caused by opening and closing the floodgate in Nakdong estuary. J. Korean Soc. Mar. Environ. Energy 2:49-59.
  16. Kooistra WH, D Sarno, S Balzano, H Gu, RA Andersen and A Zingone. 2008. Global diversity and biogeography of Skeletonema species (Bacillariophyta). Protist 159:177-193. https://doi.org/10.1016/j.protis.2007.09.004
  17. Kwon KY, CH Kim, CK Kang, CH Moon, MO Park and SR Yang. 2002. Limiting nutrients for phytoplankton growth in the Seomjin River estuary as determined by algal bioassay experiment. Korean J. Fish. Aquat. Sci. 35:455-461.
  18. Kwon KY, CH Moon, JS Lee, SR Yang, MO Park and PY Lee. 2004. Estuarine behavior and flux of nutrients in the Seomjin river estuary. The Sea 11:153-163.
  19. Lee M, JY Seo and SH Baek. 2021. Water quality characteristics and spatial distribution of phytoplankton during dry and rainy seasons in Bunam Lake and Cheonsu Bay, Korea. Korea. J. Environ. Biol. 39:184-194. https://doi.org/10.11626/KJEB.2021.39.2.184
  20. Lee MJ, DS Kim, YO Kim, MS Sohn, CH Moon and SH Baek. 2016. Seasonal phytoplankton growth and distribution pattern by environmental factor changes in inner and outer bay of Ulsan, Korea. The Sea 21:24-35. https://doi.org/10.7850/JKSO.2016.21.1.24
  21. Lee M, YB Kim, JH Kang, CH Park and SH Baek. 2020. Seasonal distribution of phytoplankton and environmental factors in the offshore waters of Dokdo: Comparison between 2018 and 2019. Korean J. Environ. Biol. 38:47-60. https://doi.org/10.11626/KJEB.2020.38.1.047
  22. Lim YK and SH Baek. 2017a. Assessment of phytoplankton viability along the salinity gradient in Seomjin River Estuary, Korea. Korean Soc. Mar. Environ. Saf. 23:513-523. https://doi.org/10.7837/kosomes.2017.23.5.513
  23. Lim YK and SH Baek. 2017b. Seasonal variation of primary producer phytoplankton community in the vicinity of the oyster farming area between Tongyeong-Saryang Island. Korean J. Environ. Biol. 35:492-500. https://doi.org/10.11626/KJEB.2017.35.4.492
  24. Oh SJ, CH Kim, HS Yang and HK Kwon. 2010. Effects of water temperature, salinity and irradiance on the growth of harmful dinoflagellate Cochlodinium polykrikoides Margelef isolated from South Sea of Korea in 2008. Korean J. Fish. Aquat. Sci. 43:715-722.
  25. Oh SJ, IS Kang, YH Yoon and HS Yang. 2008a. Optical characteristic on the growth of centric diatom, Skeletonema costatum (Grev.) Cleve isolated from Jinhae Bay in Korea. Korean J. Environ. Biol. 26:57-65.
  26. Oh SJ, JS Lee, JS Park, IH Noh and YH Yoon. 2008b. Environmental factor on the succession of phytoplankton community in Jinju Bay, Korea. J. Korean Soc. Mar. Environ. Energy 11:98-104.
  27. Park JS, CJ Cheong and YH Yoon. 2021. Characteristics of the spatio-temporal distributions of water quality and phytoplankton communities in the Isa Stream systems (ISS). Korean J. Environ. Biol. 39:273-288. https://doi.org/10.11626/KJEB.2021.39.3.273
  28. Park JS, YH Yoon and SJ Oh. 2009. Variational characteristics of phytoplankton community in the mouth parts of Gamak Bay, Southern Korea. Korean J. Environ. Biol. 27:205-215.
  29. Parsons TR, Y Maita and CM Lalli. 1984. A Manual of Biological and Chemical Methods for Seawater Analysis. Pergamon Press. New York. p. 173.
  30. Popovich CA and AM Gayoso. 1999. Effect of irradiance and temperature on the growth rate of Thalassiosira curviseriata Takano (Bacillariophyceae), a bloom diatom in Bahia Blanca estuary (Argentina). J. Plankton Res. 21:1101-1110. https://doi.org/10.1093/plankt/21.6.1101
  31. Song YB, JH Ryu, JH Noh, SJ Joo and SH Kim. 2012. Climatological variability of satellite-derived sea surface temperature and Chlorophyll on the South Sea of Korea and East China Sea. Ocean Polar Res. 33:281-290.
  32. Yamada M, E Katsuki, M Otsubo, M Kawaguchi, K Ichimi, H Kaeriyama, K Tada and PJ Harrison. 2010. Species diversity of the genus Skeletonema (Bacillariophyceae) in the industrial harbor Dokai Bay, Japan. J. Oceanogr. 66:755-771. https://doi.org/10.1007/s10872-010-0062-4
  33. Yang YH. 2003. A summary on the characteristics of marine environment and phytoplankton community in the Southwest Sea of Korea. Bull Fish. Sci. Inst. Yosu Nat'l Univ. 12:1-17.
  34. Yoon SC, SH Youn and YS Suh. 2017. The characteristics of spatiotemporal distribution on environmental factors after construction of artificial structure in the Nakdong River estuary. J. Korean Soc. Mar. Environ. Energy 20:1-11. https://doi.org/10.7846/JKOSMEE.2017.20.1.1
  35. Yoon YH. 2021. Characteristics on spatial distributions of phytoplankton communinies in relation to water masses in the western South Sea, Korea in early autumn 2021. Korean J. Environ. Biol. 39:559-572. https://doi.org/10.11626/KJEB.2021.39.4.559