광전기화학셀 기반 수소생산 핵심 요소기술 연구동향

  • 김지혜 (울산과학기술원 에너지화학공학과) ;
  • 이민서 (한양대학교 화학공학과) ;
  • 김준 (한국과학기술연구원 수소.연구전지연구센터) ;
  • 장윤정 (한양대학교 화학공학과) ;
  • 김진영 (한국과학기술연구원 수소.연구전지연구센터)
  • Published : 2022.04.30

Abstract

친환경 수소에너지로의 전환은 온실가스 감축, 미세먼지 저감 등을 통해 청정하고 안전한 사회로의 진입을 가져올 것이다. 그러나 현재 주된 수소 생산방식은 이산화탄소를 수반하는 부생수소와 추출수소 방식에 의존하는 형태가 대부분이라, 향후 그린수소 형태로의 수소생산 제조에 관한 기술 상용화 및 경쟁력 방안 확보가 절실한 상황이다. 이에 본 고에서는 광전기화학 기반의 수소생산 기술의 성능 향상과 실효성 개선을 위한 핵심 요소 기술 및 경쟁력 확보방안에 관한 부분을 논하고자 한다.

Keywords

Acknowledgement

본 논문은 한국연구재단의 지원을 받아 수행된 과제입니다(2021R1F1A1063146, 2021R1A4A3027878, 2021M3I3A1082879).

References

  1. J.H. Kim, D. Hansora, P. Sharma, J.W. Jang, J.S. Lee, Toward Practical Solar Hydrogen Production - an Artificial Photosynthetic Leaf-to-Farm Challenge, Chem. Soc. Rev., 48 (2019) 1908-1971. https://doi.org/10.1039/c8cs00699g
  2. A. Fujishima, K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature, 238 (1972) 37-38. https://doi.org/10.1038/238037a0
  3. M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi, E.A. Santori, N.S. Lewis, Solar Water Splitting Cells, Chem. Rev., 110 (2010) 6446-6473. https://doi.org/10.1021/cr1002326
  4. Y.J. Jang, A.E. Lindberg, M.A. Lumley, K.-S. Choi, Photoelectrochemical Nitrogen Reduction to Ammonia on Cupric and Cuprous Oxide Photocathodes, ACS Energy Lett., 5 (2020) 1834-1839. https://doi.org/10.1021/acsenergylett.0c00711
  5. Y. Park, K.J. McDonald, K.S. Choi, Progress in Bismuth Vanadate Photoanodes for Use in Solar Water Oxidation, Chem. Soc. Rev., 42 (2013) 2321-2337. https://doi.org/10.1039/C2CS35260E
  6. A. Paracchino, N. Mathews, T. Hisatomi, M. Stefik, S.D. Tilley, M. Gratzel, Ultrathin Films on Copper(i) Oxide Water Splitting Photocathodes: a Study on Performance and Stability, Energy Environ. Sci., 5 (2012) 8673-8681. https://doi.org/10.1039/c2ee22063f
  7. Y. Pihosh, I. Turkevych, K. Mawatari, J. Uemura, Y. Kazoe, S. Kosar, K. Makita, T. Sugaya, T. Matsui, D. Fujita, M. Tosa, M. Kondo, T. Kitamori, Photocatalytic Generation of Hydrogen by Core-Shell WO3/BiVO4 Nanorods with Ultimate Water Splitting Efficiency, Sci. Rep., 5 (2015) 11141. https://doi.org/10.1038/srep11141
  8. Y.M. Fu, Y.R. Lu, F. Ren, Z. Xing, J. Chen, P.H. Guo, W.F. Pong, C.L. Dong, L. Zhao, S.H. Shen, Surface Electronic Structure Reconfiguration of Hematite Nanorods for Efficient Photoanodic Water Oxidation, Solar Rrl, 4 (2020) 1900349. https://doi.org/10.1002/solr.201900349
  9. J.H. Kim, J.S. Lee, Elaborately Modified BiVO4 Photoanodes for Solar Water Splitting, Adv. Mater., 31 (2019) e1806938.
  10. P. Chatchai, Y. Murakami, S.-y. Kishioka, A.Y. Nosaka, Y. Nosaka, Efficient Photocatalytic Activity of Water Oxidation over WO3/BiVO4 Composite under Visible Light Irradiation, Electrochim. Acta, 54 (2009) 1147-1152. https://doi.org/10.1016/j.electacta.2008.08.058
  11. X. Shi, K. Zhang, K. Shin, M. Ma, J. Kwon, I.T. Choi, J.K. Kim, H.K. Kim, D.H. Wang, J.H. Park, Unassisted Photoelectrochemical Water Splitting Beyond 5.7% Solar-to-Hydrogen Conversion Efficiency by a Wireless Monolithic Photoanode/Dye-Sensitised Solar Cell Tandem Device, Nano Energy, 13 (2015) 182-191. https://doi.org/10.1016/j.nanoen.2015.02.018
  12. Z. Masoumi, M. Tayebi, M. Kolaei, B.-K. Lee, Unified Surface Modification by Double Heterojunction of MoS2 Nanosheets and BiVO4 Nanoparticles to Enhance the Photoelectrochemical Water Splitting of Hematite Photoanode, J. Alloys Compd., 890 (2022) 161802. https://doi.org/10.1016/j.jallcom.2021.161802
  13. S. Ho-Kimura, W. Luo, Reinforcement of a BiVO4 Anode with an Fe2O3 Underlayer for Photoelectrochemical Water splitting, Sustain. Energy Fuels, 5 (2021) 3102-3114. https://doi.org/10.1039/D1SE00310K
  14. J.H. Kim, J.W. Jang, Y.H. Jo, F.F. Abdi, Y.H. Lee, R. van de Krol, J.S. Lee, Hetero-Type Dual Photoanodes for Unbiased Solar Water Splitting with Extended Light Harvesting, Nat Commun, 7 (2016) 13380. https://doi.org/10.1038/ncomms13380
  15. L.F. Pan, J.H. Kim, M.T. Mayer, M.K. Son, A. Ummadisingu, J.S. Lee, A. Hagfeldt, J.S. Luo, M. Gratzel, Boosting the Performance of Cu2O Photocathodes for Unassisted Solar Water Splitting Devices, Nat. Catal., 1 (2018) 412-420. https://doi.org/10.1038/s41929-018-0077-6
  16. L. Pan, Y. Liu, L. Yao, R. Dan, K. Sivula, M. Gratzel, A. Hagfeldt, Cu2O Photocathodes with Band-Tail States Assisted Hole Transport for Standalone Solar Water Splitting, Nat. Commun., 11 (2020) 318. https://doi.org/10.1038/s41467-019-13987-5
  17. B. Koo, D. Kim, P. Boonmongkolras, S.R. Pae, S. Byun, J. Kim, J.H. Lee, D.H. Kim, S. Kim, B.T. Ahn, S.-W. Nam, B. Shin, Unassisted Water Splitting Exceeding 9% Solar-to-Hydrogen Conversion Efficiency by Cu(In, Ga)(S, Se)2 Photocathode with Modified Surface Band Structure and Halide Perovskite Solar Cell, ACS Appl. Energy Mater., 3 (2020) 2296-2303. https://doi.org/10.1021/acsaem.9b02387
  18. J. Luo, Z. Li, S. Nishiwaki, M. Schreier, M.T. Mayer, P. Cendula, Y.H. Lee, K. Fu, A. Cao, M.K. Nazeeruddin, Y.E. Romanyuk, S. Buecheler, S.D. Tilley, L.H. Wong, A.N. Tiwari, M. Gratzel, Targeting Ideal Dual-Absorber Tandem Water Splitting Using Perovskite Photovoltaics and CuInxGa1-xSe2 Photocathodes, Adv. Energy Mater., 5 (2015) 1501520. https://doi.org/10.1002/aenm.201501520
  19. J. Ronge, D. Nijs, S. Kerkhofs, K. Masschaele, J.A. Martens, Chronoamperometric Study of Membrane Electrode Assembly Operation in Continuous Flow Photoelectrochemical Water splitting, Phys. Chem. Chem. Phys., 15 (2013) 9315-9325. https://doi.org/10.1039/c3cp50890k
  20. M. Chen, R. Chen, X. Zhu, Q. Liao, L. An, D. Ye, Y. Zhou, X. He, W. Zhang, A Membrane Electrode Assembled Photoelectrochemical Cell with a Solar-Responsive Cadmium Sulfide-Zinc Sulfide-Titanium Dioxide/Mesoporous Silica Photoanode, J. Power Sources, 371 (2017) 96-105. https://doi.org/10.1016/j.jpowsour.2017.10.049
  21. T.A. Kistler, N. Danilovic, P. Agbo, Editors' Choice - A Monolithic Photoelectrochemical Device Evolving Hydrogen in Pure Water, J. Electrochem. Soc., 166 (2019) H656-H661. https://doi.org/10.1149/2.1151913jes
  22. T.A. Kistler, M.Y. Um, J.K. Cooper, I.D. Sharp, P. Agbo, Monolithic Photoelectrochemical CO2 Reduction Producing Syngas at 10% Efficiency, Adv. Energy Mater., 11 (2021) 2100070. https://doi.org/10.1002/aenm.202100070
  23. S. Tembhurne, F. Nandjou, S. Haussener, A Thermally Synergistic Photo-Electrochemical Hydrogen Generator Operating under Concentrated Solar Irradiation, Nat. Energy, 4 (2019) 399-407. https://doi.org/10.1038/s41560-019-0373-7
  24. Y.S. Chen, J.S. Manser, P.V. Kamat, All Solution-Processed Lead Halide Perovskite-BiVO4 Tandem Assembly for Photolytic Solar Fuels Production, J. Am. Chem. Soc., 137 (2015) 974-981. https://doi.org/10.1021/ja511739y
  25. Gurudayal, D. Sabba, M.H. Kumar, L.H. Wong, J. Barber, M. Gratzel, N. Mathews, Perovskite-Hematite Tandem Cells for Efficient Overall Solar Driven Water Splitting, Nano Lett., 15 (2015) 3833-3839. https://doi.org/10.1021/acs.nanolett.5b00616
  26. J. Brillet, J.H. Yum, M. Cornuz, T. Hisatomi, R. Solarska, J. Augustynski, M. Graetzel, K. Sivula, Highly Efficient Water Splitting by a Dual-Absorber Tandem Cell, Nat. Photonics, 6 (2012) 823-827.
  27. F.F. Abdi, L. Han, A.H. Smets, M. Zeman, B. Dam, R. van de Krol, Efficient Solar Water Splitting by Enhanced Charge Separation in a Bismuth Vanadate-Silicon Tandem Photoelectrode, Nat. Commun., 4 (2013) 2195. https://doi.org/10.1038/ncomms3195
  28. W.J. Lee, P.S. Shinde, G.H. Go, E. Ramasamy, Ag Grid Induced Photocurrent Enhancement in WO3 Photoanodes and Their Scale-up Performance Toward Photoelectrochemical H2 Generation, Int. J. Hydrog. Energy, 36 (2011) 5262-5270 https://doi.org/10.1016/j.ijhydene.2011.02.013
  29. P. Dias, M. Schreier, S.D. Tilley, J. Luo, J. Azevedo, L. Andrade, D. Bi, A. Hagfeldt, A. Mendes, M. Gratzel, M.T. Mayer, Transparent Cuprous Oxide Photocathode Enabling a Stacked Tandem Cell for Unbiased Water Splitting, Adv. Energy Mater., 5 (2015) 1501537. https://doi.org/10.1002/aenm.201501537
  30. Y. Qiu, W. Liu, W. Chen, W. Chen, G. Zhou, P.C. Hsu, R. Zhang, Z. Liang, S. Fan, Y. Zhang, Y. Cui, Efficient Solar-Driven Water Splitting by Nanocone BiVO4-Perovskite Tandem Cells, Sci. Adv., 2 (2016) e1501764. https://doi.org/10.1126/sciadv.1501764
  31. L. Han, F.F. Abdi, R. van de Krol, R. Liu, Z. Huang, H.J. Lewerenz, B. Dam, M. Zeman, A.H. Smets, Efficient Water-Splitting Device Based on a Bismuth Vanadate Photoanode and Thin-Film Silicon Solar Cells, ChemSusChem, 7 (2014) 2832-2838. https://doi.org/10.1002/cssc.201402456
  32. X.T. Li, M.L. Jia, Y.T. Lu, N. Li, Y.Z. Zheng, X. Tao, M.L. Huang, Co(OH)2/BiVO4 Photoanode in Tandem with a Carbon-Based Perovskite Solar Cell for Solar-Driven Overall Water Splitting, Electrochim. Acta, 330 (2020) 135183. https://doi.org/10.1016/j.electacta.2019.135183
  33. S.E. Jun, S.P. Hong, S. Choi, C. Kim, S.G. Ji, I.J. Park, S.A. Lee, J.W. Yang, T.H. Lee, W. Sohn, J.Y. Kim, H.W. Jang, Boosting Unassisted Alkaline Solar Water Splitting Using Silicon Photocathode with TiO2 Nanorods Decorated by Edge-Rich MoS2 Nanoplates, Small, 17 (2021) e2103457.
  34. W. Yang, J. Park, H.-C. Kwon, O.S. Hutter, L.J. Phillips, J. Tan, H. Lee, J. Lee, S.D. Tilley, J.D. Major, J. Moon, Solar Water Splitting Exceeding 10% Efficiency via Low-Cost Sb2Se3 Photocathodes Coupled with Semitransparent Perovskite Photovoltaics, Energy Environ. Sci., 13 (2020) 4362-4370. https://doi.org/10.1039/D0EE02959A
  35. S. Xiao, C. Hu, H. Lin, X. Meng, Y. Bai, T. Zhang, Y. Yang, Y. Qu, K. Yan, J. Xu, Y. Qiu, S. Yang, Integration of Inverse Nanocone Array Based Bismuth Vanadate Photoanodes and Bandgap-Tunable Perovskite Solar Cells for Efficient Self-Powered Solar Water Splitting, J. Mater. Chem. A, 5 (2017) 19091-19097. https://doi.org/10.1039/C7TA06309A