Acknowledgement
This work was supported by the research fund of Hanyang University (HY-201900000003369).
References
- Hackl C, Schlitt HJ, Melter M, Knoppke B and Loss M (2015) Current developments in pediatric liver transplantation. World J Hepatol 7, 1509-1520 https://doi.org/10.4254/wjh.v7.i11.1509
- Blaese RM, Culver KW, Miller AD et al (1995) T lymphocyte-directed gene therapy for ADA- SCID: initial trial results after 4 years. Science 270, 475-480 https://doi.org/10.1126/science.270.5235.475
- Kumar SR, Markusic DM, Biswas M, High KA and Herzog RW (2016) Clinical development of gene therapy: results and lessons from recent successes. Mol Ther Methods Clin Dev 3, 16034 https://doi.org/10.1038/mtm.2016.34
- Raper SE, Chirmule N, Lee FS et al (2003) Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol Genet Metab 80, 148-158 https://doi.org/10.1016/j.ymgme.2003.08.016
- Rees HA and Liu DR (2018) Base editing: precision chemistry on the genome and transcriptome of living cells. Nat Rev Genet 19, 770-788 https://doi.org/10.1038/s41576-018-0059-1
- Gaudelli NM, Komor AC, Rees HA et al (2017) Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. Nature 551, 464-471 https://doi.org/10.1038/nature24644
- Anzalone AV, Randolph PB, Davis JR et al (2019) Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149-157 https://doi.org/10.1038/s41586-019-1711-4
- Anzalone AV, Koblan LW and Liu DR (2020) Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol 38, 824-844 https://doi.org/10.1038/s41587-020-0561-9
- Miranda E, Perez J, Ekeowa UI et al (2010) A novel monoclonal antibody to characterize pathogenic polymers in liver disease associated with alpha1-antitrypsin deficiency. Hepatology 52, 1078-1088 https://doi.org/10.1002/hep.23760
- Stoller JK, Hupertz V and Aboussouan LS et al (1993) Alpha-1 Antitrypsin Deficiency. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2022. 2006 Oct 27 [updated 2020 May 21]
- Smith C, Abalde-Atristain L, He C et al (2015) Efficient and allele-specific genome editing of disease loci in human iPSCs. Mol Ther 23, 570-577 https://doi.org/10.1038/mt.2014.226
- Carlson JA, Rogers BB, Sifers RN et al (1989) Accumulation of PiZ alpha 1-antitrypsin causes liver damage in transgenic mice. J Clin Invest 83, 1183-1190 https://doi.org/10.1172/JCI113999
- Song CQ, Wang D, Jiang T et al (2018) In vivo genome editing partially restores alpha1-antitrypsin in a murine model of AAT deficiency. Hum Gene Ther 29, 853-860 https://doi.org/10.1089/hum.2017.225
- Bjursell M, Porritt MJ, Ericson E et al (2018) Therapeutic genome editing with CRISPR/Cas9 in a humanized mouse model ameliorates alpha1-antitrypsin deficiency phenotype. EBioMedicine 29, 104-111 https://doi.org/10.1016/j.ebiom.2018.02.015
- Shen S, Sanchez ME, Blomenkamp K et al (2018) Amelioration of alpha-1 antitrypsin deficiency diseases with genome editing in transgenic mice. Hum Gene Ther 29, 861-873 https://doi.org/10.1089/hum.2017.227
- Stephens CJ, Kashentseva E, Everett W, Kaliberova L and Curiel DT (2018) Targeted in vivo knock-in of human alpha-1-antitrypsin cDNA using adenoviral delivery of CRISPR/Cas9. Gene Ther 25, 139-156 https://doi.org/10.1038/s41434-018-0003-1
- Borel F, Tang Q, Gernoux G et al (2017) Survival advantage of both human hepatocyte xenografts and genome- edited hepatocytes for treatment of alpha-1 antitrypsin deficiency. Mol Ther 25, 2477-2489 https://doi.org/10.1016/j.ymthe.2017.09.020
- Bagnall RD, Waseem N, Green PM and Giannelli F (2002) Recurrent inversion breaking intron 1 of the factor VIII gene is a frequent cause of severe hemophilia A. Blood 99, 168-174 https://doi.org/10.1182/blood.V99.1.168
- Park CY, Kim DH, Son JS et al (2015) Functional correction of large factor VIII gene chromosomal inversions in hemophilia A patient-derived iPSCs using CRISPR-Cas9. Cell Stem Cell 17, 213-220 https://doi.org/10.1016/j.stem.2015.07.001
- Park CY, Kim J, Kweon J et al (2014) Targeted inversion and reversion of the blood coagulation factor 8 gene in human iPS cells using TALENs. Proc Natl Acad Sci U S A 111, 9253-9258 https://doi.org/10.1073/pnas.1323941111
- Wu Y, Hu Z, Li Z et al (2016) In situ genetic correction of F8 intron 22 inversion in hemophilia A patient-specific iPSCs. Sci Rep 6, 18865 https://doi.org/10.1038/srep18865
- Park CY, Sung JJ, Cho SR, Kim J and Kim DW (2019) Universal correction of blood coagulation factor viii in patient-derived induced pluripotent stem cells using CRISPR/ Cas9. Stem Cell Reports 12, 1242-1249 https://doi.org/10.1016/j.stemcr.2019.04.016
- Sung JJ, Park CY, Leem JW, Cho MS and Kim DW (2019) Restoration of FVIII expression by targeted gene insertion in the FVIII locus in hemophilia A patient-derived iPSCs. Exp Mol Med 51, 1-9
- Sharma R, Anguela XM, Doyon Y et al (2015) In vivo genome editing of the albumin locus as a platform for protein replacement therapy. Blood 126, 1777-1784
- Conway A, Mendel M, Kim K et al (2019) Non-viral delivery of zinc finger nuclease mRNA enables highly efficient in vivo genome editing of multiple therapeutic gene targets. Mol Ther 27, 866-877 https://doi.org/10.1016/j.ymthe.2019.03.003
- Barzel A, Paulk NK, Shi Y et al (2015) Promoterless gene targeting without nucleases ameliorates haemophilia B in mice. Nature 517, 360-364 https://doi.org/10.1038/nature13864
- Stephens CJ, Lauron EJ, Kashentseva E, Lu ZH, Yokoyama WM and Curiel DT (2019) Long-term correction of hemophilia B using adenoviral delivery of CRISPR/Cas9. J Control Release 298, 128-141 https://doi.org/10.1016/j.jconrel.2019.02.009
- Anguela XM, Sharma R, Doyon Y et al (2013) Robust ZFN-mediated genome editing in adult hemophilic mice. Blood 122, 3283-3287 https://doi.org/10.1182/blood-2013-04-497354
- Lyu C, Shen J, Wang R et al (2018) Targeted genome engineering in human induced pluripotent stem cells from patients with hemophilia B using the CRISPR-Cas9 system. Stem Cell Res Ther 9, 92 https://doi.org/10.1186/s13287-018-0839-8
- Blau N, van Spronsen FJ and Levy HL (2010) Phenylketonuria. Lancet 376, 1417-1427 https://doi.org/10.1016/S0140-6736(10)60961-0
- Strisciuglio P and Concolino D (2014) New strategies for the treatment of phenylketonuria (PKU). Metabolites 4, 1007-1017 https://doi.org/10.3390/metabo4041007
- Blau N, Shen N and Carducci C (2014) Molecular genetics and diagnosis of phenylketonuria: state of the art. Expert Rev Mol Diagn 14, 655-671 https://doi.org/10.1586/14737159.2014.923760
- Pan Y, Shen N, Jung-Klawitter S et al (2016) CRISPR RNA-guided FokI nucleases repair a PAH variant in a phenylketonuria model. Sci Rep 6, 35794 https://doi.org/10.1038/srep35794
- McDonald JD, Bode VC, Dove WF and Shedlovsky A (1990) The use of N-ethyl-N-nitrosourea to produce mouse models for human phenylketonuria and hyperphenylalaninemia. Prog Clin Biol Res 340C, 407-413
- Villiger L, Grisch-Chan HM, Lindsay H et al (2018) Treatment of a metabolic liver disease by in vivo genome base editing in adult mice. Nat Med 24, 1519-1525 https://doi.org/10.1038/s41591-018-0209-1
- Tanzi RE, Petrukhin K, Chernov I et al (1993) The Wilson disease gene is a copper transporting ATPase with homology to the Menkes disease gene. Nat Genet 5, 344-350 https://doi.org/10.1038/ng1293-344
- Sternlieb I, Van den Hamer CJ, Morell AG, Alpert S, Gregoriadis G and Scheinberg IH (1973) Lysosomal defect of hepatic copper excretion in Wilson's disease (hepatolenticular degeneration). Gastroenterology 64, 99-105 https://doi.org/10.1016/s0016-5085(73)80096-4
- Murillo O, Luqui DM, Gazquez C et al (2016) Long-term metabolic correction of Wilson's disease in a murine model by gene therapy. J Hepatol 64, 419-426 https://doi.org/10.1016/j.jhep.2015.09.014
- Donovan K and Guzman N (2021) Ornithine Transcarbamylase Deficiency. in StatPearls, Treasure Island (FL)
- Hodges PE and Rosenberg LE (1989) The spfash mouse: a missense mutation in the ornithine transcarbamylase gene also causes aberrant mRNA splicing. Proc Natl Acad Sci U S A 86, 4142-4146 https://doi.org/10.1073/pnas.86.11.4142
- Yang Y, Wang L, Bell P et al (2016) A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice. Nat Biotechnol 34, 334-338 https://doi.org/10.1038/nbt.3469
- Lindstedt S, Holme E, Lock EA, Hjalmarson O and Strandvik B (1992) Treatment of hereditary tyrosinaemia type I by inhibition of 4-hydroxyphenylpyruvate dioxygenase. Lancet 340, 813-817 https://doi.org/10.1016/0140-6736(92)92685-9
- Azuma H, Paulk N, Ranade A et al (2007) Robust expansion of human hepatocytes in Fah-/-/Rag2-/-/Il2rg-/- mice. Nat Biotechnol 25, 903-910 https://doi.org/10.1038/nbt1326
- Paulk NK, Wursthorn K, Wang Z, Finegold MJ, Kay MA and Grompe M (2010) Adeno-associated virus gene repair corrects a mouse model of hereditary tyrosinemia in vivo. Hepatology 51, 1200-1208 https://doi.org/10.1002/hep.23481
- Yin H, Xue W, Chen S et al (2014) Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat Biotechnol 32, 551-553 https://doi.org/10.1038/nbt.2884
- Yao X, Wang X, Liu J et al (2017) CRISPR/Cas9 - mediated precise targeted integration in vivo using a double cut donor with short homology arms. EBioMedicine 20, 19-26 https://doi.org/10.1016/j.ebiom.2017.05.015
- Shao Y, Wang L, Guo N et al (2018) Cas9-nickasemediated genome editing corrects hereditary tyrosinemia in rats. J Biol Chem 293, 6883-6892 https://doi.org/10.1074/jbc.RA117.000347
- Shin JH, Jung S, Ramakrishna S, Kim HH and Lee J (2018) In vivo gene correction with targeted sequence substitution through microhomology-mediated end joining. Biochem Biophys Res Commun 502, 116-122 https://doi.org/10.1016/j.bbrc.2018.05.130
- VanLith CJ, Guthman RM, Nicolas CT et al (2019) Ex vivo hepatocyte reprograming promotes homology-directed DNA repair to correct metabolic disease in mice after transplantation. Hepatol Commun 3, 558-573 https://doi.org/10.1002/hep4.1315
- VanLith C, Guthman R, Nicolas CT et al (2018) Curative ex vivo hepatocyte-directed gene editing in a mouse model of hereditary tyrosinemia type 1. Hum Gene Ther 29, 1315-1326 https://doi.org/10.1089/hum.2017.252
- Mangeot PE, Risson V, Fusil F et al (2019) Genome editing in primary cells and in vivo using viral-derived Nanoblades loaded with Cas9-sgRNA ribonucleoproteins. Nat Commun 10, 45 https://doi.org/10.1038/s41467-018-07845-z
- Ibraheim R, Song CQ, Mir A, Amrani N, Xue W and Sontheimer EJ (2018) All-in-one adeno-associated virus delivery and genome editing by Neisseria meningitidis Cas9 in vivo. Genome Biol 19, 137 https://doi.org/10.1186/s13059-018-1515-0
- Rossidis AC, Stratigis JD, Chadwick AC et al (2018) In utero CRISPR-mediated therapeutic editing of metabolic genes. Nat Med 24, 1513-1518 https://doi.org/10.1038/s41591-018-0184-6
- Diez-Fernandez C, Rufenacht V, Gemperle C, Fingerhut R and Haberle J (2018) Mutations and common variants in the human arginase 1 (ARG1) gene: Impact on patients, diagnostics, and protein structure considerations. Hum Mutat 39, 1029-1050 https://doi.org/10.1002/humu.23545
- Sin YY, Price PR, Ballantyne LL and Funk CD (2017) Proof-of-concept gene editing for the murine model of inducible arginase-1 deficiency. Sci Rep 7, 2585 https://doi.org/10.1038/s41598-017-02927-2
- Sin YY, Ballantyne LL, Richmond CR and Funk CD (2018) Transplantation of gene-edited hepatocyte-like cells modestly improves survival of arginase-1-deficient mice. Mol Ther Nucleic Acids 10, 122-130 https://doi.org/10.1016/j.omtn.2017.11.012
- Kim Y, Hong SA, Yu J et al (2021) Adenine base editing and prime editing of chemically derived hepatic progenitors rescue genetic liver disease. Cell Stem Cell 28, 1614-1624 e1615 https://doi.org/10.1016/j.stem.2021.04.010
- Kim Y, Kang K, Lee SB et al (2019) Small molecule-mediated reprogramming of human hepatocytes into bipotent progenitor cells. J Hepatol 70, 97-107 https://doi.org/10.1016/j.jhep.2018.09.007
- Rothgangl T, Dennis MK, Lin PJC et al (2021) In vivo adenine base editing of PCSK9 in macaques reduces LDL cholesterol levels. Nat Biotechnol 39, 949-957 https://doi.org/10.1038/s41587-021-00933-4
- Musunuru K, Chadwick AC, Mizoguchi T et al (2021) In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in primates. Nature 593, 429-434 https://doi.org/10.1038/s41586-021-03534-y
- Gillmore JD, Gane E, Taubel J et al (2021) CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis. N Engl J Med 385, 493-502 https://doi.org/10.1056/NEJMoa2107454