과제정보
이 논문은 2019년 대한민국 교육부와 한국연구재단의 지원을 받아 수행된 연구임 (NRF-2019S1A3A2098438) 이 논문은 2022년 광운대학교 교내학술연구비 지원에 의해 연구되었음(2022-0142)
참고문헌
- 김태경, 구철모, 정남호 (2021). 스마트관광에서 웹 메타 데이터의 의미와 활용 방안. 관광연구, 35(3), 5-21.
- 문현실, 임진혁, 김도연, 조윤호 (2020). 시각 정보를 활용한 딥러닝 기반 추천 시스템. 지식경영연구, 21(3), 27-44. https://doi.org/10.15813/KMR.2020.21.3.002
- 정영진, 조윤호 (2017). 온라인 구매 행태를 고려한 토픽 모델링 기반 도서 추천. 지식경영연구, 18(4), 97-118. https://doi.org/10.15813/kmr.2017.18.4.004
- 최영제, 문현실, 조윤호 (2020). 트랜잭션 기반 추천 시스템에서 워드 임베딩을 통한 도메인 지식 반영. 지식경영연구, 21(1), 117-136. https://doi.org/10.15813/KMR.2020.21.1.007
- Al-Ghossein, M., Abdessalem, T., & Barre, A. (2018). Cross-domain recommendation in the hotel sector. In Proceedings of the Workshop on Recommenders in Tourism, Vancouver, Canada, 1-6.
- Awangga, R. M., Pane, S. F., & Wijayanti, D. A. (2019). GURILEM: A novel design of customer rating model using K-Means and RFM. EMITTER International Journal of Engineering Technology, 7(2), 404-422.
- Baek, J. W., & Chung, K. Y. (2020). Multimedia recommendation using Word2Vec-based social relationship mining. Multimedia Tools and Applications, 80(26), 1-17.
- Cai, G., Lee, K., & Lee, I. (2018). Itinerary recommender system with semantic trajectory pattern mining from geo-tagged photos. Expert Systems with Applications, 94, 32-40. https://doi.org/10.1016/j.eswa.2017.10.049
- Chaudhari, K., & Thakkar, A. (2019). A comprehensive survey on travel recommender systems. Archives of Computational Methods in Engineering, 27(5), 1-27.
- Chen, L., Wu, Z., Cao, J., Zhu, G., & Ge, Y. (2020). Travel recommendation via fusing multiauxiliary information into matrix factorization. ACM Transactions on Intelligent Systems and Technology, 11(2), 1-24.
- Chen, L., Yang, W., Li, K., & Li, K. (2021). Distributed matrix factorization based on fast optimization for implicit feedback recommendation. Journal of Intelligent Information Systems, 56(1), 49-72. https://doi.org/10.1007/s10844-020-00601-0
- Esmaeili, L., Mardani, S., Golpayegani, S. A. H., & Madar, Z. Z. (2020). A novel tourism recommender system in the context of social commerce. Expert Systems with Applications, 149, 113301. https://doi.org/10.1016/j.eswa.2020.113301
- Esmeli, R., Bader-El-Den, M., & Abdullahi, H. (2020). Using Word2Vec recommendation for improved purchase prediction. In Proceedings of the 2020 International Joint Conference on Neural Networks, Glasgow, United Kingdom, 1-8.
- Fessahaye, F., Perez, L., Zhan, T., Zhang, R., Fossier, C., Markarian, R., & Oh, P. Y. (2019). T-RECSYS: A novel music recommendation system using deep learning. In Proceedings of the IEEE International Conference on Consumer Electronics, Las Vegas, NV, USA, 1-6.
- Fudholi, D. H., Rani, S., Arifin, D. M., & Satyatama, M. R. (2021). Deep learning-based mobile tourism recommender system. Scientific Journal of Informatics, 8(1), 111-118. https://doi.org/10.15294/sji.v8i1.29262
- Guo, L., Liang, J., Zhu, Y., Luo, Y., Sun, L., & Zheng, X. (2019). Collaborative filtering recommendation based on trust and emotion. Journal of Intelligent Information Systems, 53(1), 113-135. https://doi.org/10.1007/s10844-018-0517-4
- He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 770-778.
- He, X., Liao, L., Zhang, H., Nie, L., Hu, X., & Chua, T. (2017). Neural collaborative filtering. In Proceedings of the 26th International Conference on World Wide Web, Perth, Australia, 173-182.
- Hong, M. (2021). Decrease and conquer-based parallel tensor factorization for diversity and real-time of multi-criteria recommendation. Information Sciences, 562, 259-278. https://doi.org/10.1016/j.ins.2021.02.005
- Hong, M., & Jung, J. J. (2021a). Multi-criteria tensor model consolidating spatial and temporal information for tourism recommendation. Journal of Ambient Intelligence and Smart Environments, 13(1), 5-19. https://doi.org/10.3233/AIS-200584
- Hong, M., & Jung, J. J. (2021b). Multi-criteria tensor model for tourism recommender systems. Expert Systems with Applications, 170, 114537. https://doi.org/10.1016/j.eswa.2020.114537
- Hong, M., & Jung, J. J. (2022). Sentiment aware tensor model for multi-criteria recommendation. Applied Intelligence, 1-20. https://doi.org/10.1007/s10489-022-03267-z
- Katarya, R., & Arora, Y. (2020). CAPSMF: A novel product recommender system using deep learning based text analysis model. Multimedia Tools and Applications, 79(47), 35927-35948. https://doi.org/10.1007/s11042-020-09199-5
- Kotiloglu, S., Lappas, T., Pelechrinis, K., & Repoussis, P. P. (2017). Personalized multi-period tour recommendations. Tourism Management, 62, 76-88. https://doi.org/10.1016/j.tourman.2017.03.005
- Le, Q. V., & Mikolov, T. (2014). Distributed representations of sentences and documents. In Proceedings of the 31th International Conference on Machine Learning, Beijing, China, 1188-1196.
- Li, M., Wu, H., & Zhang, H. (2019). Matrix factorization for personalized recommendation with implicit feedback and temporal information in social ecommerce networks. IEEE Access, 7, 141268-141276. https://doi.org/10.1109/access.2019.2943959
- Liu, Q., Chen, E., Xiong, H., Ge, Y., Li, Z., & Wu, X. (2014). A cocktail approach for travel package recommendation. IEEE Transactions on Knowledge and Data Engineering, 26(2), 278-293. https://doi.org/10.1109/TKDE.2012.233
- Liu, Q., Zeng, Y., Mokhosi, R., & Zhang, H. (2018). STAMP: Short-term attention/memory priority model for session-based recommendation. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK, 1831-1839.
- Lu, J., Wu, D., Mao, M., Wang, W., & Zhang, G. (2015). Recommender system application developments: A survey. Decision Support Systems, 74, 12-32. https://doi.org/10.1016/j.dss.2015.03.008
- Misztal-Radecka, J., Indurkhya, B., & SmywinskiPohl, A. (2021). Meta-User2Vec model for addressing the user and item cold-start problem in recommender systems. User Modeling and User-Adapted Interaction, 31(2), 261-286. https://doi.org/10.1007/s11257-020-09282-4
- Musto, C., Semeraro, G., De Gemmis, M., & Lops, P. (2015). Word embedding techniques for content-based recommender systems: An empirical evaluation. In Proceedings of the 9th ACM Conference on Recommender Systems (RecSys), Vienna, Austria.
- Nassar, N., Jafar, A., & Rahhal, Y. (2020). A novel deep multi-criteria collaborative filtering model for recommendation system. Knowledge-Based Systems, 187, 104811. https://doi.org/10.1016/j.knosys.2019.06.019
- Ozsoy, M. G. (2016). From word embeddings to item recommendation. CoRR. abs/1601.01356
- Park, S. T., & Liu, C. (2020). A study on topic models using Lda and word2vec in travel route recommendation: Focus on convergence travel and tours reviews. Personal and Ubiquitous Computing, 26, 1-17.
- Pessemier, T. D., Dhondt, J., & Martens, L. (2017). Hybrid group recommendations for a travel service. Multimedia Tools and Applications, 76(2), 2787-2811. https://doi.org/10.1007/s11042-016-3265-x
- Rakesh, V., Jadhav, N., Kotov, A., & Reddy, C. K. (2017). Probabilistic social sequential model for tour recommendation. In Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, Cambridge, United Kingdom, 631-640.
- Shambour, Q. (2021). A deep learning based algorithm for multi-criteria recommender systems. Knowledge-Based Systems, 211, 106545. https://doi.org/10.1016/j.knosys.2020.106545
- Sharifihosseini, A. (2019). A case study for presenting bank recommender systems based on bon card transaction data. In Proceedings of the 9th International Conference on Computer and Knowledge Engineering, Iran, 72-77.
- Tahmasebi, H., Ravanmehr, R., & Mohamadrezaei, R. (2021). Social movie recommender system based on deep autoencoder network using Twitter data. Neural Computing and Applications, 33(5), 1607-1623. https://doi.org/10.1007/s00521-020-05085-1
- Tan, C., Liu, Q., Chen, E., Xiong, H., & Wu, X. (2014). Object-oriented travel package recommendation. ACM Transactions on Intelligent Systems and Technology, 5(3), 1-26.
- Thasal, R., Yelkar, S., Tare, A., & Gaikwad, S. (2018). Information retrieval and de-duplication for tourism recommender system. International Research Journal of Engineering and Technology, 5(03), 1683-1687.
- Vuong Nguyen, L., Nguyen, T. H., Jung, J. J., & Camacho, D. (2021). Extending collaborative filtering recommendation using word embedding: A hybrid approach. Concurrency and Computation: Practice and Experience, e6232. https://doi.org/10.1002/cpe.6232
- Wang, M. (2020). Applying internet information technology combined with deep learning to tourism collaborative recommendation system. Plos One, 15(12), e0240656. https://doi.org/10.1371/journal.pone.0240656
- Zhang, S., Yao, L., Sun, A., & Tay, Y. (2019). Deep learning based recommender system: A survey and new perspectives. ACM Computing Surveys, 52(1), 1-38. https://doi.org/10.1145/3158369
- Zhao, P., Xu, C., Liu, Y., Sheng, V. S., Zheng, K., Xiong, H., & Zhou, X. (2021). Photo2Trip: Exploiting visual contents in geo-tagged photos for personalized tour recommendation. IEEE Transactions on Knowledge and Data Engineering, 33(4), 1708-1721. https://doi.org/10.1109/TKDE.2019.2943854
- Zheng, X., Luo, Y., Sun, L., Zhang, J., & Chen, F. (2018). A tourism destination recommender system using users' sentiment and temporal dynamics. Journal of Intelligent Information Systems, 51(3), 557-578. https://doi.org/10.1007/s10844-018-0496-5
- Zhu, G., Cao, J., Li, C., & Wu, Z. (2017). A recommendation engine for travel products based on topic sequential patterns. Multimedia Tools and Applications, 76(16), 17595-17612. https://doi.org/10.1007/s11042-017-4406-6