DOI QR코드

DOI QR Code

Multifractal Classification of the Disturbed Areas of the Sidi Chennane Phosphate Deposit, Morocco

  • Ayad, Abderrahim (Earth Sciences Department, Faculty of Sciences and Techniques, Abdelmalek Essaadi University) ;
  • Bakkali, Saad (Earth Sciences Department, Faculty of Sciences and Techniques, Abdelmalek Essaadi University)
  • 투고 : 2022.04.29
  • 심사 : 2022.06.07
  • 발행 : 2022.06.28

초록

The irregular shape of the disturbances is a fundamental issue for mining engineers at the Sidi Chennane phosphate deposit in Morocco. A precise classification of disturbed areas is therefore necessary to understand their part in the overall volume of phosphate. In this paper, we investigate the theoretical and practical aspects of studying and measuring multifractal spectrums as a defining and representative parameter for distinguishing between the phosphate deposit of a low rate of disturbances and the deposit of a high rate. An empirical multifractal approach was used by analyzing the disturbed areas through the geoelectric images of an area located in the Sidi Chennane phosphate deposit. The Generalized fractal dimension, D(q), the Singularities of strength, α(q), the local dimension, f(α) and their conjugate parameter the mass exponent, τ(q) as well as f(α)-α spectrum were the common multifractal parameters used. The results reported show wide variations of the analyzed images, indicating that the multifractal analysis is an indicator for evaluate and characterize the disturbed areas within the phosphates deposits through the studied geoelectric images. This could be the starting point for future work aimed at improving phosphate exploration planning.

키워드

참고문헌

  1. Abidin, C. and Ulus, C. (2017) Three-dimensional modeling in medical image processing by using fractal geometry. J. Comput., v.12, p.479-485. doi: 10.17706/jcp.12.5.479-485
  2. Ait Taleb, Z., Mouflih, M., Benbouziane, A. and Amaghzaz, M. (2009) Description, petrographie et origine des paleokasts du gisement de Sidi Chennane (Bassin des Oulad Abdoun, Maroc). Notes Mem. Serv. Geol. Maroc., v.530, p.21-30.
  3. Ayad, A. and Bakkali, S. (2022) Using the mass-radius method to quantify the disturbed zones in Sidi Chennane mine through geoelectrical images. International Journal of Mining and Geo-Engineering. doi: 10.22059/ijmge.2022.320175.594898
  4. Ayad, A. (2022) Prospecting for polymetallic mineralization in Middle Morocco using fractal mapping. Arab. J. Geosci., v.15, p.1-12. doi: 10.1007/s12517-022-09613-2
  5. Ayad, A. and Bakkali S. (2019) fractal assessment of the disturbances of phosphate series using lacunarity and succolarity analysis on geoelectrical images (Sidi Chennane, Morocco). Complex., v.2019, p.1-12. doi: 10.1155/2019/9404567
  6. Ayad, A., Amrani, M. and Bakkali, S. (2019) quantification of the disturbances of phosphate series using the box-counting method on geoelectrical images (Sidi Chennane, Morocco). Int. J. Geophys., v.2019, p.1-12. doi: 10.1155/2019/2565430
  7. Ayad, A. and Bakkali, S. (2017) interpretation of potential gravity anomalies of Ouled Abdoun phosphate basin (Central Morocco). J. Mater. Environ. Sci., v.8, p.3391-3397.
  8. Bakkali, S. (2005) Analysis of phosphate deposit "disturbances" using the horizontal-gradient responses of resistivity data (Oulad Abdoun, Morocco). Earth Sci. Res. J., v.9, p.123-131.
  9. Brives, A. (1908) Sur le Senonien et l'Eocene de la bordure nord de l'Atlas marocain. C. R. Acad. Sci. Ser. Paris., v.196, p.873-875.
  10. Chhabra, A. and Jensen, R.V. (1989) Direct determination of the f(α) singularity spectrum. Phys. Rev. Lett., v.62, p.1327-1330. doi: 10.1103/physrevlett.62.1327
  11. Chhabra, A., Meneveau, C., Jensen, R.V. and Sreenivasan, K.R. (1989) Direct determination of the f(α) singularity spectrum and its application to fully developed turbulence. Phys. Rev. A, v.40, p.5284-5294. doi: 10.1103/physreva.40.5284
  12. Halsey, T.C., Jensen, M.H., Kadanoff, L.P., Procaccia, I. and Shraiman, B.I. (1986) Fractal measures and their singularities: The characterization of strange sets. Phys. Rev. A., v.33, p.1141-1151. doi: 10.1103/physreva.33.1141
  13. Hentschel, H.G.E. and Procaccia, I. (1983) The infinite number of generalized dimensions of fractals and strange attractors. J. Phys. D., v.8, p.435-444. doi: 10.1016/0167-2789(83)90235-x
  14. Karperien, A. (2004) FracLac Advanced User's Manual (Frac_Lac.jar) Plugins/Fractal Analysis/FracLac. 2005/03/23. version 2.0aF. Charles Stuart University, Australia. Available online at http://www.geocities.com/akarpe@sbcglobal.net/usefraclac.html
  15. Lindinger, J. and Rodriguez, A. (2017) Multifractal finite-size scaling at the Anderson transition in the unitary symmetry class. Phys. Rev. B., v.96, p.1-11. doi: 10.1103/physrevb.96.134202
  16. Mandal, S., Roychowdhury, T., Chirom, K., Bhattacharya, A. and Brojen, S.R.K. (2017) Complex multifractal nature in Mycobacterium tuberculosis genome. Sci. Rep., v.7, p.1-13. doi: 10.1038/srep46395
  17. Mandelbrot, B.B. Freeman, W.H. and San Francisco, C.O. (1983) The Fractal Geometry of Nature. Earth Surf. Process. Landf., v.8, p.460. doi: 10.1002/esp.3290080415
  18. Mandelbrot, B.B. (1967) How Long Is the Coast of Britain? Statistical Self-Similarity and Fractal Dimension. Sci., v.156, p.636-638. doi: 10.1126/science.156.3775.636
  19. Mandelbrot, B.B. (1989) Multifractal measures, especially for the geophysicist. Pure Appl. Geophys., v.131, p.5-42. doi: 10.1007/bf00874478
  20. Mandelbrot, B.B. (1990) Negative fractal dimensions and multifractals. Phys. A., v.163, p.306-315. doi: 10.1016/0378-4371(90)90339-t
  21. Mandelbrot, B.B. (1975) Stochastic Models of the Earth's Relief, the Shape and the Fractal Dimension of the Coastlines, and the Number-area Rule for Islands. Proc. Natl. Acad. Sci. U.S.A., v.72, p.3825-3828. doi: 10.1073/pnas.72.10.3825
  22. Russel, D., Hanson, J. and Ott, E. (1980) Dimension of strange attractors. Phys. Rev. Lett., v.45, p.1175-1178. doi: 10.1103/physrevlett.45.1175
  23. Stanley, H.E. and Meakin, P. (1988) Multifractal phenomena in physics and chemistry. Nature, v.335, p.405-409. doi: 10.1038/335405a0
  24. Thomas, I., Frankhauser, P. and Badariotti, D. (2012) Comparing the fractality of European urban neighbourhoods: do national contexts matter. J. Geogr. Syst., v.14, p.189-208. doi: 10.1007/s10109-010-0142-4
  25. Tunas, I.G., Anwar, N. and Lasmint, U. (2016) Fractal Characteristic Analysis of Watershed as Variable of Synthetic Unit Hydrograph Model. Open Civ. Eng. J., v.10, p.706-718. doi: 10.2174/1874149501610010706
  26. Wang, W., Cheng, Q., Tang, J., Pubuciren, Song, Y., Li, Y. and Liu, Z. (2017) Fractal/multifractal analysis in support of mineral exploration in the Duolong mineral district, Tibet, China. Geochem.: Explor. Environ. Anal., v.17, p.261-276. doi: 10.1144/geochem2016-449