DOI QR코드

DOI QR Code

Development and characterization of hyaluronic acid-based orally disintegrating film containing vitamin D

히알루론산 기반 비타민 D 함유 구강용해필름의 제조 및 특성평가

  • Kang, Seo-Yeon (Department of Food and Nutrition, Sangmyung University) ;
  • An, Da-Yeon (Department of Food and Nutrition, Sangmyung University) ;
  • Han, Jung-Ah (Department of Food and Nutrition, Sangmyung University)
  • 강서연 (상명대학교 식품영양학과) ;
  • 안다연 (상명대학교 식품영양학과) ;
  • 한정아 (상명대학교 식품영양학과)
  • Received : 2022.03.06
  • Accepted : 2022.04.21
  • Published : 2022.06.30

Abstract

An orally disintegrating film (ODF) based on hyaluronic acid (HA) containing vitamin D was developed. The vitamin D content in the ODF was set based on the adequate intake (AI) of vitamin D from 0 to 10 AI (0, 1, 4, 7, and 10AI). The control (0AI) had the highest thickness and showed the longest disintegration time among the samples. The moisture content of the ODFs was significantly lower in those with vitamin D compared to the control. As the amount of vitamin D increased, the water vapor permeability (WVP) of the ODFs decreased, and the opacity significantly increased. The tensile strength was higher in the films containing vitamin D compared to the control films. However, the elongation at the break showed no significant difference among the films. The vitamin D content in the film was reduced by 25.7-44.2% during processing compared to the amount that was originally added. Based on the above results, a new and convenient vitamin D delivery system, an ODF, could be successfully produced.

칼슘과 함께 뼈 건강에 필수적이나, 그 섭취량이 부족하여 문제가 되고 있는 비타민 D를 쉽게 보충할 수 있는 새로운 제형으로 천연 고분자 물질인 히알루론산을 기반으로 한 비타민 D 함유 구강용해필름(orally disintegrating film, ODF)을 개발하고 비타민 D 함량에 따른 필름의 특성을 분석하였다. 첨가량은 2020 한국인 영양소섭취기준의 비타민 D 하루 충분섭취량(400IU: 10 ㎍)을 기준으로 4, 7배, 그리고 상한섭취량인 10배로 설정하였다. 제조한 필름의 두께는 기반물질의 농도가 가장 높은 대조군이 가장 두꺼웠고, 비타민 D 첨가량에 따른 유의적 차이는 없었다(p<0.05). 비타민 D 첨가군간 필름의 수분함량의 차이는 없었으며, 첨가량이 많아질수록 투습도는 다소 감소하는 경향을 보여 소수성 물질인 비타민 D가 영향을 미친 것으로 보인다. 비타민 D의 함량이 높아질수록 필름의 명도는 10AI만 유의적으로 높았으며, 적색도는 감소하고 황색도는 증가하였다(p<0.05). 이와 같은 색도특성은 첨가한 비타민 D 시료 자체 색의 영향을 받은 것으로 보인다. 대조군과 비교하였을 때 비타민 D의 증가는 불투명도를 유의적으로 증가시켰으며(p<0.05), 7AI와 10AI에서 가장 높은 불투명도를 보였다. 다른 친수성 고분자 필름과 달리 본 연구에서 제조된 히알루론산 기반 필름은 가소제의 첨가 없이도 타 연구의 필름에 비교하여 높은 인장강도(84.40-106.6 MPa)(p<0.05)와, 비슷한 수준의 연신율(4.71-9.43%)(p>0.05)을 갖는 질감 특성을 보였다. HPLC/MS 분석을 통해 필름 내의 실제 비타민 D 함량을 분석한 결과, 제조 과정 중 비타민 D의 손실이 발견되었으며 이로 인해 목표섭취량(2020 한국인 영양소섭취기준 비타민 D 충분섭취량)을 충족하기 위해서는 제조 기준의 1.5-2배를 섭취하는 것이 적절할 것으로 보인다. 본 연구에서는 생체물질인 히알루론산을 기반으로 비타민 D를 쉽게 섭취할 수 있는 새로운 제형을 개발하였으며, 비타민 D 첨가로 인한 필름의 특성이 향상되는 결과를 이용하여 구강용해용 뿐 아니라 가식성 포장재 등 다양한 활용이 가능할 것으로 제안하는 바이다.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(NRF-2019R1A2C1002782).

References

  1. Aguirre-Loredo RY, Rodriguez-Hernandez AI, Morales-Sanchez E, Gomez-Aldapa CA, Velazquez G. Effect of equilibrium moisture content on barrier, mechanical and thermal properties of chitosan films. Food Chem. 196: 560-566 (2016) https://doi.org/10.1016/j.foodchem.2015.09.065
  2. Baek SK, Song KB. Preparation of edible films based on hyacinth bean starch. J. Korean Soc. Food Sci. Nutr. 48: 692-697 (2019) https://doi.org/10.3746/jkfn.2019.48.6.692
  3. Baeke F, Takiishi T, Korf H, Gysemans C, Mathieu C. Vitamin D: modulator of the immune system. Curr. Opin. Pharmacol. 10: 482-496 (2010) https://doi.org/10.1016/j.coph.2010.04.001
  4. Behjati J, Yazdanpanah S. Nanoemulsion and emulsion vitamin D3 fortified edible film based on quince seed gum. Carbohydr. Polym. 262: 117948 (2021) https://doi.org/10.1016/j.carbpol.2021.117948
  5. Bertuzzi MA, Vidaurre EC, Armada M, Gottifredi JC. Water vapor permeability of edible starch based films. J. Food Eng. 80: 972-978 (2007) https://doi.org/10.1016/j.jfoodeng.2006.07.016
  6. Bilbao-Sainz C, Chiou BS, Williams T, Wood D, Du WX, Sedej I, McHugh T. Vitamin D-fortified chitosan films from mushroom waste. Carbohydr. Polym. 167: 97-104 (2017) https://doi.org/10.1016/j.carbpol.2017.03.010
  7. Bodini RB, Guimaraes JDGL, Monaco-Lourenco CA, de Carvalho RA. Effect of starch and hydroxypropyl methylcellulose polymers on the properties of orally disintegrating films. J. Drug Deliv. Sci. Technol. 51: 403-410 (2019) https://doi.org/10.1016/j.jddst.2019.03.028
  8. Borges AF, Silva C, Coelho JF, Simoes S. Oral films: current status and future perspectives: I-galenical development and quality attributes. J. Control. Release 206: 1-19 (2015) https://doi.org/10.1016/j.jconrel.2015.03.006
  9. Calton EK, Keane KN, Newsholme P, Soares MJ. The Impact of Vitamin D Levels on inflammatory status: A systematic review of immune cell studies. PLoS ONE 10: e0141770 (2015) https://doi.org/10.1371/journal.pone.0141770
  10. Cao TL, Song KB. Active gum karaya/Cloisite Na+ nanocomposite films containing cinnamaldehyde. Food Hydrocoll. 89: 453-460 (2019) https://doi.org/10.1016/j.foodhyd.2018.11.004
  11. Cazon P, Vazquez M, Velazquez G. Regenerated cellulose films with chitosan and polyvinyl alcohol: Effect of the moisture content on the barrier, mechanical and optical properties. Carbohydr. Polym. 236: 116031 (2020) https://doi.org/10.1016/j.carbpol.2020.116031
  12. Choi HS, Oh HJ, Choi H, Choi WH, Kim JG, Kim KM, Kim KJ, Rhee Y, Lim SK. Vitamin D insufficiency in Korea: a greater threat to younger generation: the Korea National Health and Nutrition Examination Survey (KNHANES) (2008)
  13. Cupone IE, Dellera E, Marra F, Giori AM. Development and characterization of an orodispersible film for vitamin D3 supplementation. Molecules. 25: 5851 (2020) https://doi.org/10.3390/molecules25245851
  14. Dharmasthala S, Shabaraya AR, Andrade GS, Shriram RG, Hebbar S, Dubey A. Fast dissolving oral film of piroxicam: Solubility enhancement by forming an inclusion complex with β-cyclodextrin, formulation and evaluation. J. Young Pharm. 11 (2019)
  15. Dixit RP, Puthli SP. Oral strip technology: Overview and future potential. J. Control. Release 139: 94-107 (2009) https://doi.org/10.1016/j.jconrel.2009.06.014
  16. dos Santos Garcia VA, Borges JG, Osiro D, Vanin FM, de Carvalho RA. Orally disintegrating films based on gelatin and pregelatinized starch: new carriers of active compounds from acerola. Food Hydrocoll. 101: 105518 (2020) https://doi.org/10.1016/j.foodhyd.2019.105518
  17. Farhan A, Hani NM. Active edible films based on semi-refined κ-carrageenan: Antioxidant and color properties and application in chicken breast packaging. Food Packag. Shelf Life 24: 100476 (2020) https://doi.org/10.1016/j.fpsl.2020.100476
  18. Garcia VAS, Borges JG, Maciel VBV, Mazalli MR, Lapa-Guimaraes JG, Vanin FM, Carvalho RA. Gelatin/starch orally disintegrating films as a promising system for vitamin C delivery. Food Hydrocoll. 79: 127-135 (2018) https://doi.org/10.1016/j.foodhyd.2017.12.027
  19. Gil A, Diaz JP, Mesa MD. Vitamin D: Classic and novel actions. Ann. Nutr. Metab. 72: 87-95 (2018) https://doi.org/10.1159/000486536
  20. Guilbert S. Edible films and coatings and biodegradable packaging. Bull. Int. Dairy Fed. 346: 10-16 (2000)
  21. Gutierrez TJ, Tapia MS, Perez E, Fama L. Structural and mechanical properties of edible films made from native and modified cushcush yam and cassava starch. Food Hydrocoll. 45: 211-217 (2015) https://doi.org/10.1016/j.foodhyd.2014.11.017
  22. Ha SH, Rhim JW, Kim BY, Baik MY. Characteristics of low molecular weight alginate film prepared with γ-irradiation. J. Korean Soc. Appl. Biol. Chem. 50: 111-115 (2007)
  23. Han X, Yan J, Ren L, Xue M, Yuan Z, Wang T, Yan Z, Yin L, Yang L, Qin C. Preparation and evaluation of orally disintegrating film containing donepezil for Alzheimer disease. J. Drug Deliv. Sci. Technol. 54: 101321 (2019) https://doi.org/10.1016/j.jddst.2019.101321
  24. Heinemann RJ, Carvalho RA, Favaro-Trindade CS. Orally disintegrating film (ODF) for delivery of probiotics in the oral cavity-development of a novel product for oral health. Innov. Food Sci. Emerg. Technol. 19: 227-232 (2013) https://doi.org/10.1016/j.ifset.2013.04.009
  25. Je YR, Bang SR, Kwon LK, Park SJ, Kim CH. Synthesis and characteristic of cross-linked hyaluronic acid hydrogels with putrescine under the neutral pH condition. Polym. Korea 45: 601-609 (2021) https://doi.org/10.7317/pk.2021.45.4.601
  26. Jridi M, Hajji S, Ayed HB, Lassoued I, Mbarek A, Kammoun M, Souissi N, Nasri M. Physical, structural, antioxidant and antimicrobial properties of gelatin-chitosan composite edible films. Int. J. Biol. Macromol. 67: 373-379 (2014) https://doi.org/10.1016/j.ijbiomac.2014.03.054
  27. Litwiniuk M, Krejner A, Speyrer MS, Gauto A, Grzela T. Hyaluronic acid in inflammation and tissue regeneration. Wounds 28: 78-88 (2016)
  28. Matsumoto Y, Kuroyanagi Y. Development of a wound dressing composed of hyaluronic acid sponge containing arginine and epidermal growth factor. J. Biomater. Sci. Polym. Ed. 21: 715-726 (2010) https://doi.org/10.1163/156856209X435844
  29. Mehraj S, Sistla YS. Optimization of process conditions for the development of pectin and glycerol based edible films: Statistical design of experiments. Electro. J. Biotechnol. 55: 27-39 (2022) https://doi.org/10.1016/j.ejbt.2021.11.004
  30. Ministry of Korea Food and Drug Safety. Drug Approval System in Korea. (2011)
  31. Morillon V, Debeaufort F, Blond G, Capelle M, Voilley A. Factors affecting the moisture permeability of lipid-based edible films: a review. Crit. Rev. Food Sci. Nutr. 42: 67-89 (2002) https://doi.org/10.1080/10408690290825466
  32. Necas J, Bartosikova L, Brauner P, Kolar J. Hyaluronic acid (hyaluronan): A review. Vet. Med. 53: 397-411 (2008) https://doi.org/10.17221/1930-vetmed
  33. Oluwasina OO, Olaleye FK, Olusegun SJ, Oluwasina OO, Mohallem ND. Influence of oxidized starch on physicomechanical, thermal properties, and atomic force micrographs of cassava starch bioplastic film. Int. J. Biol. Macromol. 135: 282-293 (2019) https://doi.org/10.1016/j.ijbiomac.2019.05.150
  34. Pacheco MS, Barbieri D, da Silva CF, de Moraes MA. A review on orally disintegrating films (ODFs) made from natural polymers such as pullulan, maltodextrin, starch, and others. Int. J. Biol. Macromol. 178: 504-513 (2021) https://doi.org/10.1016/j.ijbiomac.2021.02.180
  35. Park SN, Lee HJ, Lee KH, Suh H. Biological characterization of EDC-crosslinked collagen-hyaluronic acid matrix in dermal tissue restoration. Biomater. 24: 1631-1641 (2003) https://doi.org/10.1016/S0142-9612(02)00550-1
  36. Pyo JS, Gu JY, Kim TH, Lee JJ, Hwang MS, Kang JS, Kim KM. A study on increased content of vitamin D in different types of mushrooms. Korean J. Food & Nutr. 49: 311-315 (2020) https://doi.org/10.3746/jkfn.2020.49.3.311
  37. Riaz A, Lei S, Akhtar HMS, Wan P, Chen D, Jabbar S, Abid M, Hashim MM, Zeng X. Preparation and characterization of chitosan-based antimicrobial active food packaging film incorporated with apple peel polyphenols. Int. J. Biol. Macromol. 114: 547-555 (2018) https://doi.org/10.1016/j.ijbiomac.2018.03.126
  38. Sablani SS, Dasse F, Bastarrachea L, Dhawan S, Hendrix KM, Min SC. Apple peel-based edible film development using a highpressure homogenization. J. Food Sci. 74: 372-381 (2009)
  39. Salawi A, Nazzal S. The physiochemical, mechanical, and adhesive properties of solvent-cast vitamin E/Soluplus® films. Int. J. Pharm. 552: 378-387 (2018) https://doi.org/10.1016/j.ijpharm.2018.10.018
  40. Salazar ASS, Cavazos PAS, Paz HM, Fragoso AV. External factors and nanoparticles effect on water vapor permeability of pectinbased films. J. Food Eng. 245: 73-79 (2019) https://doi.org/10.1016/j.jfoodeng.2018.09.002
  41. Sartori T, Menegalli FC. Development and characterization of unripe banana starch films incorporated with solid lipid microparticles containing ascorbic acid. Food Hydrocoll. 55: 210-219 (2016) https://doi.org/10.1016/j.foodhyd.2015.11.018
  42. Sharma L, Singh C. Sesame protein based edible films: Development and characterization. Food Hydrocoll. 61: 139-147 (2016) https://doi.org/10.1016/j.foodhyd.2016.05.007
  43. Shin JH. Development and characterization of orally disintegrating film with different thickness containing vitamin C based on hyaluronic Acid. Master thesis, Sangmyung University, Seoul, Korea (2021)
  44. Singh A, Li P, Beachley V, McDonnell P, Elisseeff JH. A hyaluronic acid-binding contact lens with enhanced water retention. Cont. Lens Anterior Eye 38: 79-84 (2015) https://doi.org/10.1016/j.clae.2014.09.002
  45. Steiner D, Finke JH, Kwade A. Efficient production of nanoparticleloaded orodispersible films by process integration in a stirred media mill. Int. J. Pharm. 511: 804-813 (2016) https://doi.org/10.1016/j.ijpharm.2016.07.058
  46. Steiner D, Finke JH, Kwade A, Model-based description of disintegration time and dissolution rate of nanoparticle-loaded orodispersible films. Eur. J. Pharm. Sci. 132: 18-26 (2019) https://doi.org/10.1016/j.ejps.2019.02.029
  47. The Korean Nutrition Society, Dietary Reference Intakes for Koreans (2020)
  48. Wang H, Ding F, Ma L, Zhang Y. Edible films from chitosan-gelatin: Physical properties and food packaging application. Food Biosci. 100871 (2021)
  49. Yang JE, Seo SA, Kang MC, Yoon DH, Im TJ, Hwang ES, Won KH, Lee TH, Kim SY. Oral administration of H. syriacus L. flower ameliorates photoaging and dryness in UVB-irradiated skin. Korean J. Food Sci. Technol. 53: 399-407 (2021) https://doi.org/10.9721/KJFST.2021.53.4.399
  50. Zareie Z, Yazdi FT, Mortazavi SA. Development and characterization of antioxidant and antimicrobial edible films based on chitosan and gamma-aminobutyric acid-rich fermented soy protein. Carbohydr. Polym. 244: 116491 (2020) https://doi.org/10.1016/j.carbpol.2020.116491