DOI QR코드

DOI QR Code

Morphology control of glassy carbon coating layer to additive ethylene glycol and phenolic resin

페놀수지 및 에틸렌 글리콜을 첨가한 유리질 카본 코팅층의 물성 제어

  • Joo, Sang Hyun (Convergence Transport Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Joo, Young Jun (Convergence Transport Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Hyuk Jun (Convergence Transport Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Sim, Young Jin (Convergence Transport Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Park, Dong Jin (GTI) ;
  • Cho, Kwang Youn (Convergence Transport Materials Center, Korea Institute of Ceramic Engineering and Technology)
  • 주상현 (한국세라믹기술원 융복합수송소재센터) ;
  • 주영준 (한국세라믹기술원 융복합수송소재센터) ;
  • 이혁준 (한국세라믹기술원 융복합수송소재센터) ;
  • 심영진 (한국세라믹기술원 융복합수송소재센터) ;
  • 박동진 ((주)지티아이) ;
  • 조광연 (한국세라믹기술원 융복합수송소재센터)
  • Received : 2022.06.03
  • Accepted : 2022.06.15
  • Published : 2022.06.30

Abstract

In this study, glassy carbon coating was performed on the graphite using a phenolic resin and a curing agent was mixed with ethylene glycol as an additive to form the uniform surface. The phenolic resin was dried and cured under the environments of hot air, then converted into a glassy carbon layer by pyrolysis at 500~1,500℃. FTIR, XRD, SEM analysis, and density/porosity/contact angle measurement were performed for characterization of glassy carbon. The pyrolysis temperature for high-quality glassy carbon was optimized to be about 1,000℃. As the content of the additive increased, the effect of reducing surface defects on the coated surface, reduction of porosity, increase of contact angle, and increase of density were investigated in this study. The method of forming a glassy carbon coating layer through an additive is expected to be applicable to graphite coating and other fields.

본 연구에서는 페놀수지를 사용하여 흑연표면에 유리질 카본 코팅을 진행하였다. 코팅액은 균일한 표면을 가지는 유리질 카본 코팅층 형성을 위해 페놀수지와 경화제, 희석제, 첨가제 등을 혼합하였다. 코팅된 페놀수지는 25~60℃에서 건조 100~200℃에서 경화 500~1,500℃에서 열처리하여 유리질 카본으로 전환하였다. 유리질 카본의 특성 분석을 위해 FTIR, XRD, SEM 분석, 밀도/기공율/접촉각 측정을 진행하였다. 유리질 카본 형성에 있어 최적 온도는 약 1,000℃로 확인되었다. 그리고 첨가제의 함량이 높아질수록 코팅 표면의 결함감소, 기공율 감소, 접촉각 증가, 밀도 증가 등의 효과를 보였다. 첨가제를 통한 유리질 카본 코팅층 형성 방법은 흑연 코팅 및 다른 분야에 적용이 가능할 것으로 기대된다.

Keywords

Acknowledgement

본 논문은 중소벤처기업부가 지원한 '중소기업기술혁신개발사업'으로 지원을 받아 수행된 연구 결과입니다[과제명: Vitreous Carbon 함침코팅 및 열처리 공정의 국산화/과제고유번호: S2848495].

References

  1. Y. Zhang, Z. Zhang, Y. Tang, D. Jia, Y. Huang, Y. Guo and Z. Zhou, "Carbon block anodes with columnar nanopores constructed from amine-functionalized carbon nanosheets for sodium-ion batteries", J. Mater. Chem. A. 8 (2020) 24393. https://doi.org/10.1039/D0TA08634G
  2. J. Zhang, C. Wang and C. Zhou, "Rigid/flexible transparent electronics based on separated carbon nanotube thin-film transistors and their application in display electronics", ACS Nano. 6 (2012) 7412. https://doi.org/10.1021/nn3026172
  3. B. Ji, F. Zhang, N. Wu and Y. Tang, "A dual-carbon battery based on potassium-ion electrolyte", Adv. Energy Mater. 7 (2017) 1700920. https://doi.org/10.1002/aenm.201700920
  4. A. Obraztsov, A. Zolotukhin, A. Ustinov, A. Volkov, Y. Svirko and K. Jefimovs, "DC discharge plasma studies for nanostructured carbon CVD", Diam Relat Mater 12 (2003) 917. https://doi.org/10.1016/S0925-9635(02)00338-2
  5. J. Lascovich, R. Giorgi and S. Scaglione, "Evaluation of the sp2/sp3 ratio in amorphous carbon structure by XPS and XAES", Appl. Surf. Sci. 47 (1991) 17. https://doi.org/10.1016/0169-4332(91)90098-5
  6. H. Kang and K. Kim, "Autoclave processing of thick carbon-phenolic composites", University of California, Los Angeles, CA (1995) 950686.
  7. Y. Wang, H. Li, Q. Fu, H. Wu, D. Yao and H. Li, "SiC/HfC/SiC ablation resistant coating for carbon/carbon composites", Surf. Coat. Technol. 206 (2012) 3883. https://doi.org/10.1016/j.surfcoat.2012.03.039
  8. S. Xu, J. Li, G. Qiao, H. Wang and T. Lu, "Pore structure control of mesoporous carbon monoliths derived from mixtures of phenolic resin and ethylene glycol", Carbon. 47 (2009) 2103. https://doi.org/10.1016/j.carbon.2009.03.069
  9. M. Choi, B. Jeon and I.J. Chung, "The effect of coupling agent on electrical and mechanical properties of carbon fiber/phenolic resin composites", Polymer. 41 (2000) 3243. https://doi.org/10.1016/S0032-3861(99)00532-7
  10. T.H. Ko, W.S. Kuo and Y.R. Lu, "The influence of post-cure on properties of carbon/phenolic resin cured composites and their final carbon/carbon composites", Polym. Compos. 21 (2000) 96. https://doi.org/10.1002/pc.10168
  11. J. Liu, R. Chen, C. Wang, Y. Zhao and F. Chu, "Synthesis and characterization of polyethylene glycol-phenol-formaldehyde based polyurethane composite", Sci. Rep. 9 (2019) 1. https://doi.org/10.1038/s41598-018-37186-2
  12. K. Manoharan, M. Anwar and S. Bhattacharya, "Development of hydrophobic paper substrates using silane and sol-gel based processes and deriving the best coating technique using machine learning strategies", Sci. Rep. 11 (2021) 1. https://doi.org/10.1038/s41598-020-79139-8
  13. I. Bae, W. Cho, S. Choi and B. Jang, "Effects of coating conditions on the thickness and morphology of alumina-or carbon-coated layers on SiC whiskers", J. Korean Ceram. Soc. 36 (1999).
  14. S.-G. Hong, K.-Y. Cho, O.-H. Kwon, Y.-S. Cho and S.- J. Jang, "High pressure curing of phenol resin for high quality coating of glassy carbon", J. Korean Ceram. Soc 48 (2011) 141. https://doi.org/10.4191/KCERS.2011.48.2.141
  15. M. Zabeti, T. Nguyen, L. Lefferts, H. Heeres and K. Seshan, "In situ catalytic pyrolysis of lignocellulose using alkali-modified amorphous silica alumina", Bioresour. Technol. 118 (2012) 374. https://doi.org/10.1016/j.biortech.2012.05.034
  16. Y. Berro, S. Gueddida, S. Lebegue, A. Pasc, N. Canilho, M. Kassir, F.E.H. Hassan and M. Badawi, "Atomistic description of phenol, CO and H2O adsorption over crystalline and amorphous silica surfaces for hydrodeoxygenation applications", Appl. Surf. Sci. 494 (2019) 721. https://doi.org/10.1016/j.apsusc.2019.07.216
  17. H. Yi, K. Wu, S. Hu and D. Cui, "Adsorption stripping voltammetry of phenol at Nafion-modified glassy carbon electrode in the presence of surfactants", Talanta 55 (2001) 1205. https://doi.org/10.1016/S0039-9140(01)00531-8
  18. H. Jiang, J. Wang, S. Wu, Z. Yuan, Z. Hu, R. Wu and Q. Liu, "The pyrolysis mechanism of phenol formaldehyde resin", Polym. Degrad. Stab. 97 (2012) 1527. https://doi.org/10.1016/j.polymdegradstab.2012.04.016
  19. G. Pulci, J. Tirillo, F. Marra, F. Fossati, C. Bartuli and T. Valente, "Carbon-phenolic ablative materials for re-entry space vehicles: Manufacturing and properties", Compos. Part A Appl. Sci. Manuf. 41 (2010) 1483. https://doi.org/10.1016/j.compositesa.2010.06.010
  20. I.E. Mulazimoglu, A.D. Mulazimoglu and E. Yilmaz, "Determination of quantitative phenol in tap water samples as electrochemical using 3, 3'-diaminobenzidine modified glassy carbon sensor electrode", Desalination 268 (2011) 227. https://doi.org/10.1016/j.desal.2010.10.033
  21. L. Wang, P. Huang, J. Bai, H. Wang, L. Zhang and Y. Zhao, "Simultaneous electrochemical determination of phenol isomers in binary mixtures at a poly (phenylalanine) modified glassy carbon electrode", Int. J. Electrochem. Sci. 1 (2006) 403.