DOI QR코드

DOI QR Code

대기의 강이 한반도 지역별 강수에 미치는 영향

Influence of Atmospheric Rivers on Regional Precipitation in South Korea

  • 권예은 (서울대학교 자연과학대학 지구환경과학부) ;
  • 박찬일 (서울대학교 자연과학대학 지구환경과학부) ;
  • 백승윤 (서울대학교 자연과학대학 지구환경과학부) ;
  • 손석우 (서울대학교 자연과학대학 지구환경과학부) ;
  • 김진원 (국립기상과학원 기후변화예측연구팀) ;
  • 차은정 (국립기상과학원 예보연구부)
  • Kwon, Yeeun (School of Earth and Environmental Sciences, Seoul National University) ;
  • Park, Chanil (School of Earth and Environmental Sciences, Seoul National University) ;
  • Back, Seung-Yoon (School of Earth and Environmental Sciences, Seoul National University) ;
  • Son, Seok-Woo (School of Earth and Environmental Sciences, Seoul National University) ;
  • Kim, Jinwon (Climate Change Research Team, National Institute of Meteorological Sciences) ;
  • Cha, Eun Jeong (Meso-scale Meteorological Phenomenon Research Team, National Institute of Meteorological Sciences, Korean Meteorological Administration)
  • 투고 : 2022.03.29
  • 심사 : 2022.05.26
  • 발행 : 2022.06.30

초록

This study investigates the influence of atmospheric river (AR) on precipitation over South Korea with a focus on regional characteristics. The 42-year-long catalog of ARs, which is obtained by applying the automatic AR detection algorithm to ERA5 reanalysis data and the insitu precipitation data recorded at 56 weather stations across the country are used to quantify their relationship. Approximately 51% of the climatological annual precipitation is associated with AR. The AR-related precipitation is most pronounced in summer by approximately 58%, while only limited fraction of precipitation (26%) is AR-related in winter. The heavy precipitation (> 30 mm day-1) is more prone to AR activity (59%) than weak precipitation (5~30 mm day-1; 33%) in all seasons. By grouping weather stations into the four sub-regions based on orography, it is found that the contribution of AR precipitation to the total is largest in the southern coast (57%) and smallest in the eastern coast (36%). Similar regional variations in AR precipitation fractions also occur in weak precipitation events. The regional contrast between the northern and southern stations is related to the seasonal variation of AR-frequency. In addition, the regional contrast between the western and eastern stations is partly modulated by the orographic forcing. The fractional contribution of AR to heavy precipitation exceeds 50% in all seasons, but this is true only in summer along the eastern coast. This result indicates that ARs play a critical role in heavy precipitation in South Korea, thus routine monitoring of ARs is needed for improving operational hydrometeorological forecasting.

키워드

과제정보

본 논문의 개선을 위해 좋은 의견을 제시해 주신 두 분의 심사위원께 감사를 드립니다. 이 연구는 기상청 국립기상과학원 「수도권 위험기상 입체관측 및 예보활용 기술 개발」(KMA2018-00125)의 지원으로 수행되었습니다.

참고문헌

  1. AMS, 2017: Atmospheric river. Glossary of Meteorology, American Meteorological Society [Available online at https://glossary.ametsoc.org/wiki/Atmospheric_river].
  2. Bao, J.-W., S. A. Michelson, P. J. Neiman, F. M. Ralph, and J. M. Wilczak, 2006: Interpretation of enhanced integrated water vapor bands associated with extratropical cyclones: their formation and connection to tropical moisture. Mon. Wea. Rev., 134, 1063-1080, doi:10.1175/mwr3123.1.
  3. Brands, S., J. M. Gutierrez, and D. San-Martin, 2017: Twentieth-century atmospheric river activity along the west coasts of Europe and North America: algorithm formulation, reanalysis uncertainty and links to atmospheric circulation patterns. Climate Dyn., 48, 2771-2795, doi:10.1007/s00382-016-3095-6.
  4. Dettinger, M. D., F. M. Ralph, T. Das, P. J. Neiman, and D. R. Cayan, 2011: Atmospheric rivers, floods and the water resources of California. Water, 3, 445-478, doi:10.3390/w3020445.
  5. Gimeno, L., and Coauthors, 2016: Major mechanisms of atmospheric moisture transport and their role in extreme precipitation events. Annu. Rev. Environ. Resour., 41, 117-141, doi:10.1146/annurev-environ-110615-085558.
  6. Guan, B., and D. E. Waliser, 2015: Detection of atmospheric rivers: evaluation and application of an algorithm for global studies. J. Geophys. Res. Atmos., 120, 12514-12535, doi:10.1002/2015JD024257.
  7. Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Q. J. R. Meteorol. Soc., 146, 1999-2049, doi:10.1002/qj.3803.
  8. Hu, H., F. Dominguez, Z. Wang, D. A. Lavers, G. Zhang, and F. M. Ralph, 2017: Linking atmospheric river hydrological impacts on the U.S. West Coast to Rossby wave breaking. J. Climate, 30, 3381-3399, doi:10.1175/jcli-d-16-0386.1.
  9. Junker, N. W., R. H. Grumm, R. Hart, L. F. Bosart, K. M. Bell, and F. J. Pereira, 2008: Use of normalized anomaly fields to anticipate extreme rainfall in the mountains of northern California. Wea. Forecasting, 23, 336-356, doi:10.1175/2007WAF2007013.1.
  10. Kamae, Y., W. Mei, S.-P. Xie, M. Naoi, and H. Ueda, 2017a: Atmospheric rivers over the Northwestern Pacific: Climatology and interannual variability. J. Climate, 30, 5605-5619, doi:10.1175/JCLI-D-16-0875.1.
  11. Kamae, Y., W. Mei, and S.-P. Xie, 2017b: Climatological relationship between warm season atmospheric rivers and heavy rainfall over East Asia. J. Meteor. Soc. Japan Ser. II, 95, 411-431, doi:10.2151/jmsj.2017-027.
  12. Kim, J., D. E. Waliser, P. J. Neiman, B. Guan, J.-M. Ryoo, and G. A. Wick, 2013: Effects of atmospheric river landfalls on the cold season precipitation in California. Climate Dyn., 40, 465-474, doi:10.1017/s00382-012-1322-3.
  13. Kim, J., and Coauthors, 2018: Winter precipitation characteristics in western US related to atmospheric river landfalls: observations and model evaluations. Climate Dyn., 50, 231-248, doi:10.1017/ s00382-017-3601-5.
  14. Kim, J., H. Moon, B. Guan, D. E. Waliser, J. Choi, T.-Y. Gu, and Y.-H. Byun, 2021: Precipitation characteristics related to atmospheric rivers in East Asia. Int. J. Climatol., 41, E2244-E2257, doi:10.1002/joc.6843.
  15. Konrad, C. P., and M. D. Dettinger, 2017: Flood runoff in relation to water vapor transport by atmospheric rivers over the Western United States, 1949~2015. Geophys. Res. Lett., 44, 11456-11462, doi:10.1002/2017GL075399.
  16. Lavers, D. A., and G. Villarini, 2013: The nexus between atmospheric rivers and extreme precipitation across Europe. Geophys. Res. Lett., 40, 3259-3264, doi:10.1002/grl.50636.
  17. Lavers, D. A., and G. Villarini, 2015: The contribution of atmospheric rivers to precipitation in Europe and the United States. J. Hydrol., 522, 382-390, doi:10.1016/j.jhydrol.2014.12.010.
  18. Lavers, D. A., R. P. Allan, E. F. Wood, G. Villarini, D. J. Brayshaw, and A. J. Wade, 2011: Winter floods in Britain are connected to atmospheric rivers. Geophys. Res. Lett., 38, L23803, doi:10.1029/2011GL049783.
  19. Lee, S., 1999: The distribution of precipitation in Cheju Island. J. Korean Geogr. Soc., 34, 123-136 (in Korean with English abstract).
  20. Lee, S., I. Heo, K. Lee, and W.-T. Kwon, 2005: Classification of local climatic regions in Korea. J. Korean Meteor. Soc., 41, 983-995 (in Korean with English abstract).
  21. Moon, H., J. Kim, B. Guan, D. E. Waliser, J. Choi, T.-Y. Goo, Y. Kim, and Y.-H. Byun, 2019: The effects of atmospheric river landfalls on precipitation and temperature in Korea. Atmosphere, 29, 343-353, doi:10.14191/ATMOS.2019.29.4.343 (in Korean with English abstract).
  22. Mundhenk, B. D., E. A. Barnes, and E. D. Maloney, 2016: All-season climatology and variability of atmospheric river frequencies over the North Pacific. J. Climate, 29, 4885-4903, doi:10.1175/JCLI-D-15-0655.1.
  23. Nash, D., D. E. Waliser, B. Guan, H. Ye, and F. M. Ralph, 2018: The role of atmospheric rivers in extratropical and polar hydroclimate. J. Geophys. Res. Atmos., 123, 6804-6821, doi:10.1029/2017JD028130.
  24. Neiman, P. J., F. M. Ralph, A. B. White, D. E. Kingsmill, and P. O. G. Persson, 2002: The statistical relationship between upslope flow and rainfall in California's coastal mountains: observations during CALJET. Mon. Wea. Rev., 130, 1468-1492, doi:10.1175/1520-0493(2002)130<1468:TSRBUF>2.0.CO;2.
  25. Park, C., S.-W. Son, and H. Kim, 2021a: Distinct features of atmospheric rivers in the early versus late east Asian summer monsoon and their impacts on monsoon rainfall. J. Geophys. Res. Atmos., 126, e2020-JD033537, doi:10.1029/2020JD033537.
  26. Park, C., and Coauthors, 2021b: Record-breaking summer rainfall in South Korea in 2020: Synoptic characteristics and the role of large-scale circulations. Mon. Wea. Rev., 149, 3085-3100, doi:10.1175/MWR-D-21-0051.1.
  27. Park, C., S.-W. Son, J. Kim, E.-C. Chang, J.-H. Kim, E. Jo, D.-H. Cha, and S. Jeong, 2021c: Diverse synoptic weather patterns of warm-season heavy rainfall events in South Korea. Mon. Wea. Rev., 149, 3875-3893, doi:10.1175/MWR-D-20-0388.1.
  28. Paltan, H., D. Waliser, W. H. Lim, B. Guan, D. Yamazaki, R. Pant, and S. Dadson, 2017: Global floods and water availability driven by atmospheric rivers. Geophys. Res. Lett., 44, 10387-10395, doi:10.1002/2017GL074882.
  29. Payne, A. E., and G. Magnusdottir, 2014: Dynamics of landfalling atmospheric rivers over the North Pacific in 30 years of MERRA reanalysis. J. Climate, 27, 7133-7150, doi:10.1175/JCLI-D-14-00034.1.
  30. Payne, A. E., and Coauthors, 2020: Responses and impacts of atmospheric rivers to climate change. Nat. Rev. Earth Environ., 1, 143-157, doi:10.1038/s43017-020-0030-5.
  31. Ralph, F. M., and M. D. Dettinger, 2012: Historical and national perspectives on extreme west coast precipitation associated with atmospheric Rivers during December 2010. Bull. Amer. Meteor. Soc., 93, 783-790, doi:10.1175/BAMS-D-11-00188.1.
  32. Ralph, F. M., P. J. Neiman, and G. A. Wick, 2004: Satellite and CALJET aircraft observations of atmospheric rivers over the eastern North Pacific Ocean during the winter of 1997/98. Mon. Wea. Rev., 132, 1721-1745, doi:10.1175/1520-0493(2004)132<1721:SACAOO>2.0.CO;2.
  33. Ralph, F. M., P. J. Neiman, G. A. Wick, S. I. Gutman, M. D. Dettinger, D. R. Cayan, and A. B. White, 2006: Flooding on California's Russian River: Role of atmospheric rivers. Geophys. Res. Lett., 33, L13801, doi:10.1029/2006GL026689.
  34. Ralph, F. M., T. Coleman, P. J. Neiman, R. J. Zamora, and M. D. Dettinger, 2013: Observed impacts of duration and seasonality of atmospheric-river landfalls on soil moisture and runoff in coastal northern California. J. Hydrometeor., 14, 443-459, doi:10.1175/JHM-D-12-076.1.
  35. Ralph, F. M., S. F. Iacobellis, P. J. Neiman, J. M. Cordeira, J. R. Spackman, D. E. Waliser, G. A. Wick, A. B. White, and C. Fairall, 2017: Dropsonde observations of total integrated water vapor transport within North Pacific atmospheric rivers. J. Hydrometeor., 18, 2577-2596, doi:10.1175/JHM-D-17-0036.1.
  36. Ralph, F. M., M. D. Dettinger, M. M. Cairns, T. J. Galarneau, and J. Eylander, 2018: Defining "atmospheric river": How the glossary of meteorology helped resolve a debate. Bull. Amer. Meteor. Soc., 99, 837-839, doi:10.1175/BAMS-D-17-0157.1.
  37. Rutz, J. J., W. J. Steenburgh, and F. M. Ralph, 2014: Climatological characteristics of atmospheric rivers and their inland penetration over the western United States. Mon. Wea. Rev., 142, 905-921, doi:10.1175/MWR-D13-00168.1.
  38. Rutz, J. J., and Coauthors, 2019: The atmospheric river tracking method intercomparison project (ARTMIP): Quantifying uncertainties in atmospheric river climatology. J. Geophys. Res. Atmos., 124, 13777-13802, doi:10.1029/2019JD030936.
  39. Ryu, Y., and Coauthors, 2021: A multi-inventory ensemble analysis of the effects of atmospheric rivers on precipitation and streamflow in the Namgang-dam basin in Korea. Water Resour. Res., 57, e2021WR030058, doi:10.1029/2021WR030058.
  40. Schultz, D. M., and G. Vaughan, 2011: Occluded fronts and the occlusion process: A fresh look at conventional wisdom. Bull. Amer. Meteor. Soc., 92, 443-466, doi:10.1175/2010BAMS3057.1.
  41. Viale, M., R. Valenzuela, R. D. Garreaud, and F. M. Ralph, 2018: Impacts of atmospheric rivers on precipitation in southern South America. J. Hydrometeor., 19, 1671-1687, doi:10.1175/JHM-D-18-0006.1.
  42. Waliser, D., and B. Guan, 2017: Extreme winds and precipitation during landfall of atmospheric rivers. Nat. Geosci., 10, 179-183, doi:10.1038/NGEO2894.
  43. Zhu, Y., and R. E. Newell, 1998: A proposed algorithm for moisture fluxes from atmospheric rivers. Mon. Wea. Rev., 126, 725-735, doi:10.1175/1520-0493(1998)126<0725:APAFMF>2.0.CO;2.