References
- WHO, "World malaria report 2021," Report, 2021.
- WHO, "Malaria: fact sheet," Report, 2014.
- J. Duncan and L. Hartley, ''Blood Smear Examination: Normal Cells,'' Veterinary Nursing Journal, vol. 15, no. 6, 2014, pp. 231-234.
- N. J. Shah, Introduction to Basics of Pharmacology and Toxicology. Singapore: Springer 2019.
- T. Visser, J. Daily, N. Hotte, C. Dolkart, J. Cunningham, and P. Yadav, ''Rapid diagnostic tests for malaria,'' Bulletin of the World Health Organization, vol. 93, no. 12, 2015, pp. 862-866. https://doi.org/10.2471/BLT.14.151167
- WHO, ''Malaria microscopy quality assurance manual-Ver.2,'' Report, 2016.
- W. Shang, K. Sohn, D. Almeida, and H. Lee, "Understanding and improving convolutional neural networks via concatenated rectified linear units," 33rd International Conference on Machine Learning, New York, USA, 2016.
- P. Moeskops, J. Wolterink, B. van der Velden, K. Gilhuijs, T. Leiner, M. Viergever, and I. Isgum, ''Deep Learning for Multi-Task Medical Image Segmentation in Multiple Modalities,'' International Conference on Medical Image Computing and Computer-Assisted Intervention, Athens, Greece, 2016.
- K. Maninis, J. Pont-Tuset, P. Arbelaez, and L. Van Gool, ''Deep Retinal Image Understanding,'' International Conference on Medical Image Computing and Computer-Assisted Intervention, Athens, Greece, 2016.
- Y. Sato and G. Gerig, ''MICCAI: Medical Image Computing and Computer-Assisted Intervention,'' Academic Radiology, vol. 10, no. 12, 2003, pp. 1339-1340. https://doi.org/10.1016/S1076-6332(03)00614-7
- J. H. Bong, S. H. Jeong, S. Jeong, and J. Han, ''Study on Image Use for Plant Disease Classification,'' Journal of the Korea Institute of Electronic Communication Sciences, vol. 17, no. 2, 2022, pp. 343-350. https://doi.org/10.13067/JKIECS.2022.17.2.343
- M. Kim, ''A Study on the Sports Rehabilitation Treatment for the lntellectual Disabilities using deep learning,'' Journal of the Korea Institute of Electronic Communication Sciences, vol. 15, no. 4, 2020, pp. 725-732. https://doi.org/10.13067/JKIECS.2020.15.4.725
- L. Rosado, J. M. Correia da Costa, D. Elias, and J. S. Cardoso, "A Review of Automatic Malaria Parasites Detection and Segmentation in Microscopic Images," Anti-Infective Agents, vol. 14, no. 1, 2016, pp. 11-22.
- F. B. Tek, A. G. Dempster, and I. Kale, "Parasite detection and identification for automated thin blood film malaria diagnosis," Computer vision and image understanding, vol. 114, no. 1, 2010, pp. 21-32. https://doi.org/10.1016/j.cviu.2009.08.003
- D. K. Das, R. Mukherjee, and C. Chakraborty, "Computational microscopic imaging for malaria parasite detection: a systematic review," Journal of microscopy, vol. 260, no. 1, 2015, pp. 1-19. https://doi.org/10.1111/jmi.12270
- N. E. Ross, C. J. Pritchard, D. M. Rubin, and A. G. Duse, "Automated image processing method for the diagnosis and classification of malaria on thin blood smears," Medical and Biological Engineering and Computing, vol. 44, no. 5, 2006, pp. 427-436. https://doi.org/10.1007/s11517-006-0044-2
- S. Sinha, U. Srivastava, V. Dhiman, P. S. Akhilan, and S. Mishra, ''Performance assessment of deep learning procedures: Sequential and ResNet on malaria dataset,'' Journal of Robotics and Control (JRC), vol. 2, no. 1, 2021, pp. 12-18.
- S. Tasdemir and M. M. Qanbar, ''Detection of Malaria Diseases with Residual Attention Network,'' International Journal of Intelligent Systems and Applications in Engineering, vol. 7, no. 4, 2019, pp. 238-244. https://doi.org/10.18201/ijisae.2019457677
- A. S. B. Reddy and D. S. Juliet, ''Transfer Learning with ResNet-50 for Malaria Cell-Image Classification,'' International Conference on Communication and Signal Processing, Chennai, India, 2019.
- J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu, X. Wang, G. Wang, J. Cai, and T. Chen, ''Recent advances in convolutional neural networks,'' Pattern Recognition, vol. 77, 2018, pp. 354-377. https://doi.org/10.1016/j.patcog.2017.10.013
- Z. Liang, A. Powell, I. Ersoy, M. Poostchi, K. Silamut, K. Palaniappan, P. Guo, M. Hossain, A. Sameer, R. Maude, J. Huang, S. Jaeger, and G. Thoma, ''CNN based analysis for malaria diagnosis,'' International conference on bioinformatics and biomedicine(BIBM), Shenzhen China, 2016.
- R. Harini and N. Sheela, "Feature Extraction and Classification of Retinal Images for Automated Detection of Diabetic Retinopathy," Second International Conference on Cognitive Computing and Information Processing, Mysuru India, 2016.
- K. Simonyan and A. Zisserman, ''Very Deep Convolutional Networks for Large-Scale Image Recognition Karen,'' American Journal of Health-System Pharmacy, vol. 75, no. 6, 2018, pp. 398-406. https://doi.org/10.2146/ajhp170251
- O. Wichrowska, N. Maheswaranathan, M. Hoffman, S. Colmenarejo, M. Denii, N. De Freitas, and S.-D. Jascha, ''Learned optimizers that scale and generalize,'' 34th International Conference on Machine Learning, Sydney, Australia, 2017.