References
- F. Black, M. Scholes, The pricing of options and corporate liabilities, J. Political. Econ, 81 (1973), 637-659. https://doi.org/10.1086/260062
- R. C. Merton, Theory of rational option pricing, Bell J. Econ. Manag. Sci, 4 (1973), 141-183. https://doi.org/10.2307/3003143
- K. in't Hout,R. Volk, Numerical solution of a two-asset option valuation PDE by ADI finite difference discretization, AIP Conference Proceedings, AIP, Proceedings of ICNAAM, Rhodes, Greece 2014.
- D. Joeng, J. Kim, In. Suk Wee, An accurate and efficient numerical method for Black-Scholes equations, Commun. Korean. Soc, 24 (2009), 617-628. https://doi.org/10.4134/CKMS.2009.24.4.617
- L. V. Ballestra, G. Pacelli, Pricing European and American options with two stocastic factors: a highly efficient radial basis function approach, J. Econom. Dynam. Control, 37 (2013), 1142-1167. https://doi.org/10.1016/j.jedc.2013.01.013
- J. A. Rad, K. Parand, L. V. Ballestra, Pricing European and American options by radial basis point interpolation, Appl. Math. Comput, 251 (2015), 363-377. https://doi.org/10.1016/j.amc.2014.11.016
- V. Shcherbakov. E. Larsson, Radial basis function partition for unity methods for pricing vanilla basket options, Comput. Math. Appl, 71 (2016), 185-200. https://doi.org/10.1016/j.camwa.2015.11.007
- Sh. Zhang, Radial basis functions method for valuing options: A multinomial tree approach, J. Comput. Appl. Math, 319 (2017), 97-107. https://doi.org/10.1016/j.cam.2016.12.036
- J. Sabatier, O. P. Agrawal, J. A. Ttenreiro Machado, Advances in fractional calculus, Theoretical Developments and Applications in Physics and Engineering, Springer, 2007.
- A. A. Kilbas, H. M. Srivastara, J. J. Trujillo, Theory and application of factional differential equations, Elsevier, Amsterdam, 2006.
- I. Podlubny, Fractional differential equations, Academic Press, New York, 1999.
- H. Sheng, Y. Chen, T. Qiu,Fractional processes and fractional-order signal processing: Thechniques and applications, Springer-Verlag, London, 2011.
- W. Wyss, The fractional Black-Scholes equation, Fract. Calc. Appl. Theory. Appl., 3 (2000), 51-61.
- G. Jumaire, Stock exchange fractional dynamics defined as fractional exponential growth driven by (usual) Gaussian white noise. application to fractional Black-Scholes equation, Insur. Math. Econ., 42 (2008), 271-285. https://doi.org/10.1016/j.insmatheco.2007.03.001
- R. Kalantari, S. Shahmorad, A stable and convergent finite difference method for fractional Black-Scholes model of American put option pricing, Comput. Econ, 53 (2019), 191-205. https://doi.org/10.1007/s10614-017-9734-0
- M. N. Kolvea, L. G. Vulkov, Numerical solution of time fractional Black-Scholes equation, Comput. Appl. Math., 36 (2017), 1699-1715. https://doi.org/10.1007/s40314-016-0330-z
- L. Song, W. Wang, Solution of the fractional Black-Scholes option pricing model by finite difference method, Abstr. Appl. Anal., 2013 (2013), 1-10.
- H. Zhang, F. Liu, I. Turner, S. Chen, The numerical simulation of the tempered fractional Black-Scholes equation for European double barrier option, Appl. Math. Model., 40 (2016), 5819-5834. https://doi.org/10.1016/j.apm.2016.01.027
- S. Hagh, M. Hussain, Selection of shape parameter in radial basis functions for solution of time fractional Black-Scholes models, Appl. Math. Comput., 335 (2018), 248-263. https://doi.org/10.1016/j.amc.2018.04.045
- H. Zhang, F. Liu, I. Turner, Q. Yang, Numerical solution of the time fractional Black-Scholes model governinig European options, Comput. Math. Appl., 71 (2016), 1772-1783. https://doi.org/10.1016/j.camwa.2016.02.007
- H. Zhang, F. Liu, S. Chen, V. Anh, J. Chen, Fast numerical simulation of a new time-space fractional option pricing model governing European call option, Appl. Math. Comput, 339 (2018), 186-198. https://doi.org/10.1016/j.amc.2018.06.030
- Z. Cen, J. Huang, A. Xu, A.Le, Numerical approximation of a time fractional Black-Scholes equation, Comput. Math. Appl., 75 (2018), 2874-2887. https://doi.org/10.1016/j.camwa.2018.01.016
- S. Kumar, D. Kumar, J. Singh, Numerical computation of fractional Black-Scholes equation arising in financial market, Eghypt. J. Basic. Appl. Sci, 1 (2014), 177-183.
- P. Phachoo, A. Luadsong, N. Aschariyaphotha, The meshless local Petrov-Galerkin based on moving kriging interpolation for solving fractional Black-Scholes model, J. King. Saud. Uni. Sci, 28 (2016), 111-117. https://doi.org/10.1016/j.jksus.2015.08.004
- P. Roul, A high accuracy numerical method and its convergence for time-fractional Black-Scholes equation governing European option, Appl. Numer. Math., 151 (2020), 472-493. https://doi.org/10.1016/j.apnum.2019.11.004
- M. Rezaei, A. R. Yazdanian, A. Ashrafi, S. M. Mahmoudi, Numerical pricing based on fractional BlackScholes equations with time-dependent parameters under the CEY models double barriers option, Comput. Math. Appl., 90 (2021), 104-111. https://doi.org/10.1016/j.camwa.2021.02.021
- X. An, F. Liu, M. Zheng, Y. Anh, I. W. Turner, A space-time spectral method for time-fractional Black-Scholes equations, Appl. Numer. Math, 165 (2021), 152-166. https://doi.org/10.1016/j.apnum.2021.02.009
- S. E. Fadugba, Homotopy analysis method and its applications in the valuation of European call options with time-fractional Black-Scholes equation, Chaos. Solitons. Fract, 141 (2020), 110351. https://doi.org/10.1016/j.chaos.2020.110351
- P. Roul, V. M. K. Prased Goura, A compact finite difference scheme for fractional Black-Scholes option pricing model, Appl. Numer. Math, 166 (2021), 40-60. https://doi.org/10.1016/j.apnum.2021.03.017
- R. Delpasand, M. M. Hosseini, An efficient hybrid numerical method for the two-asset Black-Scholes PDE, J. Korean. Soc. Ind. Appl. Math, 25 (2021), 93-106. https://doi.org/10.12941/JKSIAM.2021.25.093
- R. Doostaki, M. M. Hosseini, Option pricing by the Legendre Wavelets method, Comput. Econ, 59 (2022), 749-773. https://doi.org/10.1007/s10614-021-10100-1
- A. Golbabai, E. Mohebianfar, A new method for evaluating options based on multiquadric RBF-FD method. Appl. Math. Comput, 308 (2017), 130-141. https://doi.org/10.1016/j.amc.2017.03.019
- S. Kim, C. Lee, W. Lee, S. Kwak, D. Jeong, J. Kim, Nonuniform Finite Difference Scheme for the Three-Dimensional Time-Fractional Black-Scholes Equation. Journal of Function Spaces, 2021 (2021), 1-11.
- W. R. Madych, Miscellaneaus error bounds for multiquadratic and related interpolants, Comput. Math. Appl, 24 (1992), 121-130. https://doi.org/10.1016/0898-1221(92)90175-H
- M. Buhmann, N. Oyn, Spectral convergence of multiquadratic interpolation, Proc. Edinb. Math. Soc, 36 (1993), 319-333. https://doi.org/10.1017/S0013091500018411
- H. Wendland, Scattered Data Approximation, Cambridge University Press, Cambridge, 2005.
- W. Margrabe, The value of an option to exchnge one-asset for another, J. Finac, 33 (1978), 177-186. https://doi.org/10.1111/j.1540-6261.1978.tb03397.x
- H. Johnson, Options on the minimum or the maximum of several assets, J. Finac. Quant. Anal, 22 (1987), 277-283. https://doi.org/10.2307/2330963
- M. Rubinste, Somewhere over the rainbow, Risk Magazine, 4 (1995), 63-66.
- R. Stulz, Options in the minimum or the maximum of two risky assets, J. Finac. Econ, 10 (1982), 161-185 https://doi.org/10.1016/0304-405X(82)90011-3