Acknowledgement
This work is supported by the National Key R&D Program of China (2021YFA1000800), the National Natural Science Foundation of China under Grant No. 11871457, the K.C.Wong Education Foundation, Chinese Academy of Sciences.
References
- D. Chae and J. Lee, On the blow-up criterion and small data global existence for the Hall-magnetohydrodynamics, J. Differential Equations, 256 (2014), 3835-3858. https://doi.org/10.1016/j.jde.2014.03.003
- J. Fan and T. Ozawa, Regularity criteria for the density-dependent Hall-magnetohydrodynamics, Appl. Math. Lett., 36 (2014), 14-18. https://doi.org/10.1016/j.aml.2014.04.010
- D. Chae, R. Wan and J. Wu, Local well-posedness for the Hall-MHD equations with fractional magnetic diffusion, J. Math. Fluid Mech., 17 (2015), 627-638. https://doi.org/10.1007/s00021-015-0222-9
- M. E. Schonbek, L 2 decay for weak solutions of the Navier-Stokes equations, Arch. Rational Mech. Anal., 88 (1985), 209-222. https://doi.org/10.1007/BF00752111
- D. Chae and M. E. Schonbek, On the temporal decay for the Hall-magnetohydrodynamic equations, J. Differential Equations, 255 (2013), 3971-3982. https://doi.org/10.1016/j.jde.2013.07.059
- H. O. Bae and H. J. Choe, Decay rate for the incompressible flows in half spaces, Math. Z., 238 (2001), 799-816. https://doi.org/10.1007/s002090100276
- H. O. Bae and B. J. Jin, Temporal and spatial decays for the Navier-Stokes equations, Proc. Roy. Soc. Edinburgh Sect. A, 135 (2005), 461-477. https://doi.org/10.1017/S0308210505000247
- H. O. Bae and B. J. Jin, Upper and lower bounds of temporal and spatial decays for the Navier-Stokes equations, J. Differential Equations, 209 (2005), 365-391. https://doi.org/10.1016/j.jde.2004.09.011
- H. O. Bae and B. J. Jin, Asymptotic behavior for the Navier-Stokes equations in 2D exterior domains, J. Funct. Anal., 240 (2006), 508-529. https://doi.org/10.1016/j.jfa.2006.04.029
- H. O. Bae and B. J. Jin, Temporal and spatial decay rates of Navier-Stokes solutions in exterior domains, Bull. Korean Math. Soc., 44 (2007), 547-567. https://doi.org/10.4134/BKMS.2007.44.3.547
- L. Brandolese, Space-time decay of Navier-Stokes flows invariant under rotations, Math. Ann., 329 (2004), 685-706. https://doi.org/10.1007/s00208-004-0533-2
- C. He and D. Zhou, Existence and asymptotic behavior for an incompressible Newtonian flow with intrinsic degree of freedom, Math. Methods Appl. Sci., 37 (2014), 1191-1205. https://doi.org/10.1002/mma.2880
- M. E. Schonbek, Large time behaviour of solutions to the Navier-Stokes equations in Hm spaces, Comm. Partial Differential Equations, 20 (1995), 103-117. https://doi.org/10.1080/03605309508821088
- P. L. Lions, Mathematical topics in fluid mechanics, Vol. 1, Incompressible models, Oxford University Press, New York, 1996.
- G. P. Galdi, An introduction to the mathematical theory of the Navier-Stokes equations, Steady-state problems, Second edition, Springer Monographs in Mathematics, Springer, New York, 2011.
- L. Caffarelli, R. Kohn and L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. Pure Appl. Math., 35 (1982), 771-831. https://doi.org/10.1002/cpa.3160350604
- P. Han, C. Liu, K. Lei and X. Wang, Asymptotic behavior of weak solutions to the inhomogeneous Navier-Stokes equations, J. Math. Fluid Mech., https://doi.org/10.1007/s00021-021-00636-5.