DOI QR코드

DOI QR Code

High-Resolution Intracranial Vessel Wall MRI Findings Among Different Middle Cerebral Artery Territory Infarction Types

  • So Yeon Won (Department of Radiology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine) ;
  • Jihoon Cha (Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine) ;
  • Hyun Seok Choi (Department of Radiology, Seoul Medical Center) ;
  • Young Dae Kim (Department of Neurology, Yonsei University College of Medicine) ;
  • Hyo Suk Nam (Department of Neurology, Yonsei University College of Medicine) ;
  • Ji Hoe Heo (Department of Neurology, Yonsei University College of Medicine) ;
  • Seung-Koo Lee (Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine)
  • Received : 2021.08.01
  • Accepted : 2021.12.09
  • Published : 2022.03.01

Abstract

Objective: Intracranial atherosclerotic stroke occurs through various mechanisms, mainly by artery-to-artery embolism (AA) or branch occlusive disease (BOD). This study evaluated the spatial relationship between middle cerebral artery (MCA) plaques and perforating arteries among different MCA territory infarction types using vessel wall magnetic resonance imaging (VW-MRI). Materials and Methods: We retrospectively enrolled patients with acute MCA infarction who underwent VW-MRI. Thirty-four patients were divided into three groups according to infarction pattern: 1) BOD, 2) both BOD and AA (BOD-AA), and 3) AA. To determine the factors related to BOD, the BOD and BOD-AA groups were combined into one group (with striatocapsular infarction [BOD+]) and compared with the AA group. To determine the factors related to AA, the BOD-AA and AA groups were combined into another group (with cortical infarction [AA+]) and compared with the BOD group. Plaque morphology and the spatial relationship between the perforating artery orifice and plaque were evaluated both quantitatively and qualitatively. Results: The plaque margin in the BOD+ group was closer to the perforating artery orifice than that in the AA group (p = 0.011), with less enhancing plaque (p = 0.030). In the BOD group, plaques were mainly located on the dorsal (41.2%) and superior (41.2%) sides where the perforating arteries mainly arose. No patient in the AA group had overlapping plaques with perforating arteries at the cross-section where the perforator arose. Perforating arteries associated with culprit plaques were most frequently located in the middle two-thirds of the M1 segment (41.4%). The AA+ group had more stenosis (%) than the BOD group (39.73 ± 24.52 vs. 14.42 ± 20.96; p = 0.003). Conclusion: The spatial relationship between the perforating artery orifice and plaque varied among different types of MCA territory infarctions. In patients with BOD, the plaque margin was closer and blocked the perforating artery orifice, and stenosis degree and enhancement were less than those in patients with AA.

Keywords

References

  1. Gorelick PB, Wong KS, Bae HJ, Pandey DK. Large artery intracranial occlusive disease: a large worldwide burden but a relatively neglected frontier. Stroke 2008;39:2396-2399 
  2. Shin DH, Lee PH, Bang OY. Mechanisms of recurrence in subtypes of ischemic stroke: a hospital-based follow-up study. Arch Neurol 2005;62:1232-1237 
  3. Caplan LR. Intracranial branch atheromatous disease: a neglected, understudied, and underused concept. Neurology 1989;39:1246-1250 
  4. Ryoo S, Lee MJ, Cha J, Jeon P, Bang OY. Differential vascular pathophysiologic types of intracranial atherosclerotic stroke: a high-resolution wall magnetic resonance imaging study. Stroke 2015;46:2815-2821 
  5. Ryoo S, Park JH, Kim SJ, Kim GM, Chung CS, Lee KH, et al. Branch occlusive disease: clinical and magnetic resonance angiography findings. Neurology 2012;78:888-896 
  6. Kim BJ, Yoon Y, Lee DH, Kang DW, Kwon SU, Kim JS. The shape of middle cerebral artery and plaque location: high-resolution MRI finding. Int J Stroke 2015;10:856-860 
  7. Sun LL, Li ZH, Tang WX, Liu L, Chang FY, Zhang XB, et al. High resolution magnetic resonance imaging in pathogenesis diagnosis of single lenticulostriate infarction with nonstenotic middle cerebral artery, a retrospective study. BMC Neurol 2018;18:51 
  8. Xu WH, Li ML, Gao S, Ni J, Zhou LX, Yao M, et al. Plaque distribution of stenotic middle cerebral artery and its clinical relevance. Stroke 2011;42:2957-2959 
  9. Richardson PD, Davies MJ, Born GV. Influence of plaque configuration and stress distribution on fissuring of coronary atherosclerotic plaques. Lancet 1989;334:941-944 
  10. Shindo S, Fujii K, Shirakawa M, Uchida K, Enomoto Y, Iwama T, et al. Morphologic features of carotid plaque rupture assessed by optical coherence tomography. AJNR Am J Neuroradiol 2015;36:2140-2146 
  11. Thrysoe SA, Oikawa M, Yuan C, Eldrup N, Klaerke A, Paaske WP, et al. Longitudinal distribution of mechanical stresses in carotid plaques of symptomatic patients. Stroke 2010;41:1041-1043 
  12. Toutouzas K, Karanasos A, Tsiamis E, Riga M, Drakopoulou M, Synetos A, et al. New insights by optical coherence tomography into the differences and similarities of culprit ruptured plaque morphology in non-ST-elevation myocardial infarction and ST-elevation myocardial infarction. Am Heart J 2011;161:1192-1199 
  13. Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin JC, Pujol S, et al. 3D Slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging 2012;30:1323-1341 
  14. Brown DL, Hibbs MS, Kearney M, Loushin C, Isner JM. Identification of 92-kD gelatinase in human coronary atherosclerotic lesions. Association of active enzyme synthesis with unstable angina. Circulation 1995;91:2125-2131 
  15. de Kleijn DP, Sluijter JP, Smit J, Velema E, Richard W, Schoneveld AH, et al. Furin and membrane type-1 metalloproteinase mRNA levels and activation of metalloproteinase-2 are associated with arterial remodeling. FEBS Lett 2001;501:37-41 
  16. Tang D, Teng Z, Canton G, Yang C, Ferguson M, Huang X, et al. Sites of rupture in human atherosclerotic carotid plaques are associated with high structural stresses: an in vivo MRI-based 3D fluid-structure interaction study. Stroke 2009;40:3258-3263 
  17. Umansky F, Gomes FB, Dujovny M, Diaz FG, Ausman JI, Mirchandani HG, et al. The perforating branches of the middle cerebral artery. A microanatomical study. J Neurosurg 1985;62:261-268 
  18. Marinkovic SV, Milisavljevic MM, Kovacevic MS, Stevic ZD. Perforating branches of the middle cerebral artery. Microanatomy and clinical significance of their intracerebral segments. Stroke 1985;16:1022-1029 
  19. Yoon Y, Lee DH, Kang DW, Kwon SU, Kim JS. Single subcortical infarction and atherosclerotic plaques in the middle cerebral artery: high-resolution magnetic resonance imaging findings. Stroke 2013;44:2462-2467 
  20. Bae YJ, Choi BS, Jung C, Yoon YH, Sunwoo L, Bae HJ, et al. Differentiation of deep subcortical infarction using high-resolution vessel wall MR imaging of middle cerebral artery. Korean J Radiol 2017;18:964-972 
  21. Shaaban AM, Duerinckx AJ. Wall shear stress and early atherosclerosis: a review. AJR Am J Roentgenol 2000;174:1657-1665 
  22. Gibson CM, Diaz L, Kandarpa K, Sacks FM, Pasternak RC, Sandor T, et al. Relation of vessel wall shear stress to atherosclerosis progression in human coronary arteries. Arterioscler Thromb 1993;13:310-315 
  23. Wang Y, Qiu J, Luo S, Xie X, Zheng Y, Zhang K, et al. High shear stress induces atherosclerotic vulnerable plaque formation through angiogenesis. Regen Biomater 2016;3:257-267 
  24. Zhao ZN, Li XL, Liu JZ, Jiang ZM, Wang AH. Features of branch occlusive disease-type intracranial atherosclerotic stroke in young patients. BMC Neurol 2018;18:87 
  25. Kim JM, Jung KH, Sohn CH, Moon J, Han MH, Roh JK. Middle cerebral artery plaque and prediction of the infarction pattern. Arch Neurol 2012;69:1470-1475