DOI QR코드

DOI QR Code

Henry gas solubility optimization for control of a nuclear reactor: A case study

  • 투고 : 2021.04.11
  • 심사 : 2021.09.19
  • 발행 : 2022.03.25

초록

Meta-heuristic algorithms have found their place in optimization problems. Henry gas solubility optimization (HGSO) is one of the newest population-based algorithms. This algorithm is inspired by Henry's law of physics. To evaluate the performance of a new algorithm, it must be used in various problems. On the other hand, the optimization of the proportional-integral-derivative (PID) gains for load-following of a nuclear power plant (NPP) is a good challenge to assess the performance of HGSO. Accordingly, the power control of a pressurized water reactor (PWR) is targeted, based on the point kinetics model with six groups of delayed-neutron precursors. In any optimization problem based on meta-heuristic algorithms, an efficient objective function is required. Therefore, the integral of the time-weighted square error (ITSE) performance index is utilized as the objective (cost) function of HGSO, which is constrained by a stability criterion in steady-state operations. A Lyapunov approach guarantees this stability. The results show that this method provides superior results compared to an empirically tuned PID controller with the least error. It also achieves good accuracy compared to an established GA-tuned PID controller.

키워드

참고문헌

  1. F.A. Hashim, E.H. Houssein, M.S. Mabrouk, W. Al-Atabany, S. Mirjalili, Henry gas solubility optimization: a novel physics-based algorithm, Future Generat. Comput. Syst. 101 (2019) 646-667. https://doi.org/10.1016/j.future.2019.07.015
  2. F.A. Hashim, E.H. Houssein, K. Hussain, M.S. Mabrouk, W. Al-Atabany, A modified Henry gas solubility optimization for solving motif discovery problem, Neural Comput. Appl. 32 (2020) 10759-10771. https://doi.org/10.1007/s00521-019-04611-0
  3. N. Neggaz, E.H. Houssein, K. Hussain, An efficient henry gas solubility optimization for feature selection, Expert Syst. Appl. 152 (2020) 113364. https://doi.org/10.1016/j.eswa.2020.113364
  4. B.S. Yildiz, A.R. Yildiz, N. Pholdee, S. Bureerat, S.M. Sait, V. Patel, The Henry gas solubility optimization algorithm for optimum structural design of automobile brake components, Mater. Test. 62 (2020) 261-264. https://doi.org/10.3139/120.111479
  5. S. Ekinci, B. Hekimoglu, D. Izci, Opposition based Henry gas solubility optimization as a novel algorithm for PID control of DC motor, Eng. Sci. Technol. an Int. J. 24 (2021) 331-342. https://doi.org/10.1016/j.jestch.2020.08.011
  6. S. Ekinci, D. Izci, B. Hekimoglu, Henry gas solubility optimization algorithm based FOPID controller design for automatic voltage regulator, in: 2020 Int. Conf. Electr. Commun. Comput. Eng., 2020, pp. 1-6.
  7. S. Ekinci, D. Izci, B. Hekimoglu, Implementing the Henry Gas Solubility Optimization Algorithm for Optimal Power System Stabilizer Design, 2021.
  8. D. Izci, S. Ekinci, Comparative performance analysis of slime mould algorithm for efficient design of proportional-integraled-rivative controller, Electrica 21 (2021) 151-159. https://doi.org/10.5152/electrica.2021.20077
  9. D. Izci, S. Ekinci, A. Demiroren, J. Hedley, HHO algorithm based PID controller design for aircraft pitch angle control system, in: 2020 Int. Congr. Human-Computer Interact. Optim. Robot. Appl, IEEE, 2020, pp. 1-6.
  10. S. Ekinci, B. Hekimoglu, Improved kidney-inspired algorithm approach for tuning of PID controller in AVR system, IEEE Access 7 (2019) 39935-39947. https://doi.org/10.1109/access.2019.2906980
  11. S.M.H. Mousakazemi, N. Ayoobian, G.R. Ansarifar, Control of the pressurized water nuclear reactors power using optimized proportional-integral-derivative controller with particle swarm optimization algorithm, Nucl. Eng. Technol. 50 (2018) 877-885. https://doi.org/10.1016/j.net.2018.04.016
  12. S.M.H. Mousakazemi, N. Ayoobian, G.R. Ansarifar, Control of the reactor core power in PWR using optimized PID controller with the real-coded GA, Ann. Nucl. Energy 118 (2018) 107-121. https://doi.org/10.1016/j.anucene.2018.03.038
  13. G. Kirui, J. Wang, Design of a fuzzy FOPID controller for power level control of a pressurized water reactor, ACM Int. Conf. Proc. Ser. 144 (2020) 549-553.
  14. M. Elsisi, H. Abdelfattah, New design of variable structure control based on ightning search algorithm for nuclear reactor power system considering load-following operation, Nucl. Eng. Technol. 52 (2020) 544-551. https://doi.org/10.1016/j.net.2019.08.003
  15. B. Puchalski, T.A. Rutkowski, K. Duzinkiewicz, Fuzzy multi-regional fractional PID controller for pressurized water nuclear reactor, ISA Trans. 103 (2020) 86-102. https://doi.org/10.1016/j.isatra.2020.04.003
  16. A.A. de M. Meneses, L.M. Araujo, F.N. Nast, P.V. da Silva, R. Schirru, Application of metaheuristics to Loading Pattern Optimization problems based on the IAEA-3D and BIBLIS-2D data, Ann. Nucl. Energy 111 (2018) 329-339. https://doi.org/10.1016/j.anucene.2017.09.008
  17. J.J. Ortiz-Servin, D.A. Pelta, J.M. Cadenas, A. Castillo, J.L. Montes-Tadeo, Methodology for integrated fuel lattice and fuel load optimization using population-based metaheuristics and decision trees, Prog. Nucl. Energy 104 (2018) 264-270. https://doi.org/10.1016/j.pnucene.2017.10.006
  18. P.A. Wrigley, P. Wood, P. Stewart, R. Hall, D. Robertson, Module layout optimization using a genetic algorithm in light water modular nuclear reactor power plants, Nucl. Eng. Des. 341 (2019) 100-111. https://doi.org/10.1016/j.nucengdes.2018.10.023
  19. D.W. Lim, C.W. Lee, J.Y. Lim, D. Hartanto, On the particle swarm optimization of cask shielding design for a prototype sodium-cooled fast reactor, Nucl. Eng. Technol. 51 (2019) 284-292. https://doi.org/10.1016/j.net.2018.09.007
  20. N. Zare, G. Jahanfarnia, A. Khorshidi, J. Soltani, Robustness of optimized FPID controller against uncertainty and disturbance by fractional nonlinear model for research nuclear reactor, Nucl. Eng. Technol. 52 (2020) 2017-2024. https://doi.org/10.1016/j.net.2020.03.002
  21. G. Wang, J. Wu, B. Zeng, Z. Xu, X. Ma, A nonlinear adaptive sliding mode control strategy for modular high-temperature gas-cooled reactors, Prog. Nucl. Energy 113 (2019) 53-61. https://doi.org/10.1016/j.pnucene.2019.01.006
  22. N. Kastin, E. Meron, A. Kolin, S. Kinast, Nonlinear stability and limit cycles in xenon-induced reactor oscillations, Prog. Nucl. Energy 116 (2019) 168-179. https://doi.org/10.1016/j.pnucene.2019.03.023
  23. D.L. Hetrick, Dynamics of Nuclear Reactors, American Nuclear Society, 1993.
  24. G.R. Ansarifar, M. Rafiei, Higher order sliding mode controller design for a research nuclear reactor considering the effect of xenon concentration during load following operation, Ann. Nucl. Energy 75 (2015) 728-735. https://doi.org/10.1016/j.anucene.2014.09.021
  25. R.A. Krohling, J.P. Rey, R.A. Krohling, J.P. Rey, Design of optimal disturbance rejection PID controllers using genetic algorithms, IEEE Trans. Evol. Comput. 5 (2001) 78-82. https://doi.org/10.1109/4235.910467
  26. H.E.A. Ibrahim, F.N. Hassan, A.O. Shomer, Optimal PID control of a brushless DC motor using PSO and BF techniques, Ain Shams Eng. J. 5 (2014) 391-398. https://doi.org/10.1016/j.asej.2013.09.013
  27. A. Dabiri, B.P. Moghaddam, J.A.T. Machado, Optimal variable-order fractional PID controllers for dynamical systems, J. Comput. Appl. Math. 339 (2018) 40-48. https://doi.org/10.1016/j.cam.2018.02.029
  28. K. Zare, M.T. Hagh, J. Morsali, Effective oscillation damping of an interconnected multi-source power system with automatic generation control and TCSC, Int. J. Electr. Power Energy Syst. 65 (2015) 220-230. https://doi.org/10.1016/j.ijepes.2014.10.009
  29. H. Gozde, M.C. Taplamacioglu, Automatic generation control application with craziness based particle swarm optimization in a thermal power system, Int. J. Electr. Power Energy Syst. 33 (2011) 8-16. https://doi.org/10.1016/j.ijepes.2010.08.010
  30. K. Naidu, H. Mokhlis, A.H.A. Bakar, V. Terzija, H.A. Illias, Application of firefly algorithm with online wavelet filter in automatic generation control of an interconnected reheat thermal power system, Int. J. Electr. Power Energy Syst. 63 (2014) 401-413. https://doi.org/10.1016/j.ijepes.2014.05.055
  31. K.J. Astrom, T. HAgglund, Advanced PID Control, ISA-The Instrumentation, Systems and Automation Society, 2006.