DOI QR코드

DOI QR Code

SACADA and HuREX part 2: The use of SACADA and HuREX data to estimate human error probabilities

  • 투고 : 2021.04.12
  • 심사 : 2021.09.02
  • 발행 : 2022.03.25

초록

As a part of probabilistic risk (or safety) assessment (PRA or PSA) of nuclear power plants (NPPs), the primary role of human reliability analysis (HRA) is to provide credible estimations of the human error probabilities (HEPs) of safety-critical tasks. In this regard, it is vital to provide credible HEPs based on firm technical underpinnings including (but not limited to): (1) how to collect HRA data from available sources of information, and (2) how to inform HRA practitioners with the collected HRA data. Because of these necessities, the U.S. Nuclear Regulatory Commission and the Korea Atomic Energy Research Institute independently developed two dedicated HRA data collection systems, SACADA (Scenario Authoring, Characterization, And Debriefing Application) and HuREX (Human Reliability data EXtraction), respectively. These systems provide unique frameworks that can be used to secure HRA data from full-scope training simulators of NPPs (i.e., simulator data). In order to investigate the applicability of these two systems, two papers have been prepared with distinct purposes. The first paper, entitled "SACADA and HuREX: Part 1. The Use of SACADA and HuREX Systems to Collect Human Reliability Data", deals with technical issues pertaining to the collection of HRA data. This second paper explains how the two systems are able to inform HRA practitioners. To this end, the process of estimating HEPs is demonstrated based on feed-and-bleed operations using HRA data from the two systems.

키워드

과제정보

This work was supported by a grant from the Nuclear Research & Development Program of the National Research Foundation of Korea, funded by the Korean government, Ministry of Science, ICT & Future Planning (grant number 2017M2A8A4015291), and by the Nuclear Safety Research Program through the Korea Foundation Of Nuclear Safety (KoFONS), funded by the Nuclear Safety and Security Commission of the Republic of Korea (No. grant number 2101054).

참고문헌

  1. R. Patriarca, M. Ramos, N. Paltrinieri, S. Massaiu, F. Costantino, G. Di Gravio, R.L. Boring, Human reliability analysis: exploring the intellectual structure of a research field, Reliab. Eng. Syst. Saf. 203 (2020) 107102. https://www.sciencedirect.com/science/article/pii/S0951832020306037. https://doi.org/10.1016/j.ress.2020.107102
  2. Spurgin, A.J., P. Moieni, C.D. Gaddy, G.W. Parry, D.D. Orvis, J.P. Spurgin, V. Joksimovich, D.P. Gaver, and G.W. Hannaman, Operator Reliability Experiments Using Power Plant Simulators Volume 1: Executive Summary, 1990, EPRI NP-6937, Vol 1, Electric Power Research Institute, https://www.epri.com/research/products/NP-6937-V1.
  3. A.J. Spurgin, P. Moieni, C.D. Gaddy, G.W. Parry, D.D. Orvis, J.P. Spurgin, V. Joksimovich, D.P. Gaver, G.W. Hannaman, Appende\ixes, Operator Reliability Experiments Using Power Plant Simulators Volume 3, 3, Electric Power Research Institute, 1990. EPRI NP-6937, https://www.epri.com/research/products/NP-6937-V1.
  4. A.J. Spurgin, P. Moieni, C.D. Gaddy, G.W. Parry, D.D. Orvis, J.P. Spurgin, V. Joksimovich, D.P. Gaver, G.W. Hannaman, Technical Report, Operator Reliability Experiments Using Power Plant Simulators Volume 2, 2, Electric Power Research Institute, 1990. EPRI NP-6937, https://www.epri.com/research/products/NP-6937-V1.
  5. C. Bieder, P. Le-Bot, F. Cara, MERMOS, a second generation HRA method: what it does and doesn't, in: International Topical Meeting on Probabilistic Safety Assessment (PSA'99), 1999. Washington D.C.: American Nuclear Society.Aug 22 -26, 1999.
  6. C. Bieder, P. Le-Bot, E. Desmares, J.-L. Bonnet, F. Cara, Mermos : EDF's new advanced HRA method, in: A. Mosleh, R.A. Bari (Eds.), IAPSAM 4, Springer, New York City, 1998, pp. 129-134.
  7. Y.J. Chang, D. Bley, L. Criscione, B. Kirwan, A. Mosleh, T. Madary, R. Nowell, R. Richards, E.M. Roth, S. Sieben, A. Zoulis, The SACADA database for human reliability and human performance, Reliab. Eng. Syst. Saf. 125 (2014) 117-133, https://doi.org/10.1016/j.ress.2013.07.014.
  8. W. Jung, J. Park, Y. Kim, S.Y. Choi, S. Kim, HuREX - a framework of HRA data collection from simulators in nuclear power plants, Reliab. Eng. Syst. Saf. 194 (2020) 106235. http://www.sciencedirect.com/science/article/pii/S0951832017309857. https://doi.org/10.1016/j.ress.2018.07.036
  9. B. Kirwan, G. Basra, S.E. Taylor-Adams, CORE-DATA: a computerised human error database for human reliability support, in: Global Perpectives of Human Factors in Power Generation. Proceeding of the 1997 IEEE Sixth Conference on Human Factors and Power Plants. 1997, IEEE, 1997. http://ieeexplore.ieee.org/document/624858/.
  10. K. Jan, R. Dolezal, HRA data collection projects in Czech republic, in: HRA Data Workshop, 2020. Rockville Maryland, U.S. Nuclear Regulatory Commission.ADAMS Accession No. ML20083J308.
  11. A. Bye, E. Lois, V.N. Dang, G. Parry, J. Forester, S. Massaiu, R. Boring, P.O. Braarud, H. Broberg, J. Julius, I. Mannisto, P. Nelson, NUREG/IA-0216, International HRA Empirical Study - Phase 2 Report: Results from Comparing HRA Method Predictions to Simulator Data from SGTR Scenarios, 2, 2011. ADAMS Accession No. ML11250A010), U.S. Nuclear Regulatory Commission, https://www.nrc.gov/docs/ML1125/ML11250A010.pdf.
  12. V.N. Dang, J. Forester, R. Boring, H. Broberg, S. Massaiu, J. Julius, I. Mannisto, H. Liao, P. Nelson, E. Lois, A. Bye, NUREG/IA-0216, International HRA Empirical Study - Phase 3 Report: Results from Comparing HRA Methods Predictions to HAMMLAB Simulator Data on LOFW Scenarios, 3, 2014. ADAMS Accession No. ML14358A254), U.S. Nuclear Regulatory Commission, https://www.nrc.gov/docs/ML1435/ML14358A254.pdf.
  13. J. Forester, V.N. Dang, A. Bye, E. Lois, S. Massaiu, H. Broberg, P.O. Braarud, R. Boring, I. Mannisto, H. Liao, J. Julius, G. Parry, P. Nelson, The International HRA Empirical Study: Lessons Learned from Comparing HRA Methods Predictions to HAMMLAB Simulator Data, 2014. NUREG-2127 (ADAMS Accession No. ML14227A197), U.S. Nuclear Regulatory Commission, https://www.nrc.gov/docs/ML1422/ML14227A197.pdf.
  14. E. Lois, V.N. Dang, J. Forester, H. Broberg, S. Massaiu, M. Hildebrandt, P.O. Braarud, G. Parry, J. Julius, R. Boring, I. Mannisto, A. Bye, NUREG/IA-0216, International HRA Empirical Study - Phase 1 Report: Description of Overall Approach and Pilot Phase Results from Comparing HRA Methods to Simulator Performance Data, 1, 2009. ADAMS Accession No. ML093380283), U.S. Nuclear Regulatory Commission, https://www.nrc.gov/docs/ML0933/ML093380283.pdf.
  15. J. Forester, H. Liao, V.N. Dang, A. Bye, E. Lois, M. Presley, J. Marble, R. Nowell, H. Broberg, M. Hildebrandt, B. Halbert, T. Morgan, The U.S. HRA empirical study - assessment of HRA method predictions against operating crew performance on a U.S. Nuclear power plant simulator, NUREG-2156 (ADAMS Accession No. ML16179A124), U.S. Nuclear Regulatory Commission, https://www.nrc.gov/docs/ML1617/ML16179A124.pdf, 2016.
  16. Y.J. Chang, Preliminary analysis results of SACADA data for HEPs, in: HRA Data Workshop, ADAMS Accession No. ML20083J313, 2020. Rockville Maryland, March 12-13, 2020.
  17. M.A. Azarm, I.S. Kim, C. Marks, F. Azarm, Proposed methods for using SACADA DATA for empirical HRA estimation, in: HRA Data Workshop, the NRC Headquarters, March 15-16, 2018, 2018. Rockville, Maryland: U.S. Nuclear Regulatory Commission.ADAMS Accession No. ML18079A161.
  18. M.A. Azarm, I.S. Kim, C. Marks, F. Azarm, Analyses methods and pilot applications of SACADA data, in: Probabilistic Safety Assessment and Management (PSAM 14), UCLA Meyer & Renee Conference Center, Los Angeles, CA, 2018, in: http://www.iapsam.org/psam14/proceedings/paper/paper_60_1.pdf, in: http://www.iapsam.org/psam14/proceedings/Presentations/78.pdf.
  19. M.A. Azarm, I.S. Kim, C. Marks, F. Azarm, Data Analysis and a Pilot Application Using SACADA [Scenario Authoring, Characterization, and Debriefing Application], 2018. Innovative Engineering and Safety Solutions, LLC, ADAMS Access No. ML21012A293: U.S. Nuclear Regulatory Commission, http://www.iapsam.org/psam14/proceedings/paper/paper_60_1.pdf, http://www.iapsam.org/psam14/proceedings/Presentations/78.pdf.
  20. P. Nelson, C.R. Grantom, D. Quintanar-Gago, Methodology for supporting the determination of human error probabilities from simulator sourced data, in: Probabilistic Safety Assessment and Management (PSAM 14), UCLA Meyer & Renee Conference Center, Los Angeles, CA, 2018, in: http://www.iapsam.org/psam14/proceedings/paper/paper_78_1.pdf, in: http://www.iapsam.org/psam14/proceedings/Presentations/78.pdf.
  21. S. Fitch, P. Nelson, C.R. Grantom, A method to use SACADA data for estimating human error probabilities of human failure events, in: Human Reliability Analysis Data Workshop, March 15-16, 2018, ADAMS Accession No. ML18079A160, Rockville, Maryland, 2018. U.S. Nuclear Regulatory Commission.
  22. S. Fitch, P.F. Nelson, C.R. Grantom, A method to use SACADA data for estimating human error probabilities of human failure events, in: HRA Data Workshop, the NRC Headquarters, March 15-16, 2018, 2018. Rockville, Maryland.ADAMS Accession No. ML18079A160.
  23. S.A. Fitch, P. Nelson, C.R. Grantom, A Methodology to Use SACADA Data for Estimating Human Error Probabilities of Human Failure Events, Trinitek Services, Inc., 2018. ADAMS Accession No. ML21012A294: U.S. Nuclear Regulatory Commission, http://www.iapsam.org/psam14/proceedings/paper/paper_78_1.pdf, http://www.iapsam.org/psam14/proceedings/Presentations/78.pdf.
  24. K.M. Groth, J.D. Tedeschi, R. Moradi, Transforming HRA using SACADA data, Bayesian methods, and DBNs, in: HRA Data Worksop, the NRC Headquarters, March 15-16, 2018, 2018. Rockville, Maryland.ADAMS Accession No. ML18079A162.
  25. K.M. Groth, R. Smith, R. Moradi, Exploration of Methods for Using SACADA Data to Estimate HEPs: Final Report, Center for Risk and Reliability, University of Maryland, 2018. ADAMS Accession No. ML21012A295: U.S. Nuclear Regulatory Commission.
  26. K.M. Groth, R. Smith, R. Moradi, A hybrid algorithm for developing third generation HRA methods using simulator data, causal models, and cognitive science, Reliab. Eng. Syst. Saf. 191 (2019) 106507. http://www.sciencedirect.com/science/article/pii/S0951832018312456. https://doi.org/10.1016/j.ress.2019.106507
  27. M. Neil, N. Fenton, L. Nielsen, Building large-scale Bayesian networks, Knowl. Eng. Rev. 15 (3) (2000) 257-284. https://doi.org/10.1017/S0269888900003039
  28. NORSYS Software Corp, Counting-Learning Algorithm, 2020. https://www.norsys.com/WebHelp/NETICA/X_Counting_Learning_Algorithm.htm.
  29. T.M. Sousa, T. Pinto, I. Praca, Z. Vale, H. Morais, Reinforcement learning based on the bayesian theorem for electricity markets decision support, in: S. Omatu, et al. (Eds.), Distributed Computing and Arti ficial Intelligence, 11th International Conference, Springer, New York, 2014.
  30. Y. Kim, J. Kim, J. Park, S. Choi, H. Kim, An HRA Method for Digital Main Control Rooms -Part II: Estimating the Failure Probability Due to Cognitive Error, 2020.
  31. J. Kim, S.J. Lee, S. Jang, HuRECA: the Human Reliability Analysis Method for Computer-Based Advanced Control Rooms, Korea Atomic Energy Research Institute, 2011. KAERI/TR-4385.
  32. S.F. Greco, L. Podofillini, V.N. Dang, A Bayesian model to treat within-category and crew-to-crew variability in simulator data for Human Reliability Analysis, Reliab. Eng. Syst. Saf. 206 (2021) 107309. https://doi.org/10.1016/j.ress.2020.107309