DOI QR코드

DOI QR Code

Natural radioactivity level in fly ash samples and radiological hazard at the landfill area of the coal-fired power plant complex, Vietnam

  • Loan, Truong Thi Hong (Nuclear Technique Laboratory, University of Science) ;
  • Ba, Vu Ngoc (Nuclear Technique Laboratory, University of Science) ;
  • Thien, Bui Ngoc (Department of Nuclear Physics - Nuclear Engineering, Faculty of Physics and Engineering Physics, University of Science)
  • 투고 : 2021.04.08
  • 심사 : 2021.10.13
  • 발행 : 2022.04.25

초록

In this study, natural radioactivity concentrations and dosimetric values of fly ash samples were evaluated for the landfill area of the coal-fired power plant (CFPP) complex at Binh Thuan, Vietnam. The average activity concentrations of 238U, 226Ra, 232Th and 40K were 93, 77, 92 and 938 Bq kg-1, respectively. The average results for radon dose, indoor external, internal, and total effective dose equivalent (TEDE) were 5.27, 1.22, 0.16, and 6.65 mSv y-1, respectively. The average emanation fraction for fly ash were 0.028. The excess lifetime cancer risks (ELCR) were recorded as 20.30×10-3, 4.26×10-3, 0.62×10-3, and 25.61×10-3 for radon, indoor, outdoor exposures, and total ELCR, respectively. The results indicated that the cover of shielding materials above the landfill area significantly decreased the gamma radiation from the ash and slag in the ascending order: Zeolite < PVC < Soil < Concrete. Total dose of all radionuclides in the landfill site reached its peak at 19.8 years. The obtained data are useful for evaluation of radiation safety when fly ash is used for building material as well as the radiation risk and the overload of the landfill area from operation of these plants for population and workers.

키워드

과제정보

This research is funded by Vietnam National University Ho Chi Minh City (VNU-HCM) under grant number VL2020-18-01. We would like to express our sincere thanks to Prof. Dr. Sc. Nguyen Ngoc Tran, Dr. Le Xuan Thuyen and the Board of Directors of the EVN Group, the Board of Directors of Vinh Tan 2 CFPP for supporting the measurements and sampling in the inner area and the disposal area of the CFPP.

참고문헌

  1. UNSCEAR, United Nations Scientific Committee on the Effects of Atomic Radiation, Sources and Effects of Ionizing Radiation. Report to General Assembly, Annex B. United Nations, New York, 2008.
  2. IAEA, Radiation and Safety of Radiation Sources: Safety Reports Series No.115. Vienna, 1996.
  3. UNSCEAR, United Nations Scientific Committee on the Effects of Atomic Radiation, Sources and Effects of Ionizing Radiation. United Nations, New York, 2000.
  4. R.C. Bhangare, M. Tiwari, P.Y. Ajmal, S.K. Sahu, G.G. Pandit, Distribution of natural radioactivity in coal and combustion residues of thermal power plants, J. Radioanal. Nucl. Chem. 300 (1) (2014) 17-22. https://doi.org/10.1007/s10967-014-2942-3
  5. I. Uslu, F. Gokmese, Coal an impure fuel source: radiation effects of coal-fired power plants in Turkey, Hacettepe J Biol Chem 38 (4) (2010) 259-268.
  6. R. Kumar, A.K. Mahur, D. Sengupta, R. Prasad, Radon activity and exhalation rates measurements in fly ash from a thermal power plant, Radiat. Meas. 40 (2005a) 638-641. https://doi.org/10.1016/j.radmeas.2005.05.007
  7. R. Kumar, A.K. Mathur, A.K. Singh, Study of radon exhalation rate and uranium concentration from fly ash produced in the combustion of coal using SSATD's, Indian J. Environ. Protect. 25 (2005b) 609-611.
  8. S. Bhattacharyya, R.J. Donahoe, D. Patel, Experimental study of chemical treatment of coal fly ash to reduce the mobility of priority trace elements, Fuel 88 (2009) 1173-1184. https://doi.org/10.1016/j.fuel.2007.11.006
  9. M. Gupta, A.K. Mahur, R.G. Sonkawade, K.D. Verma, R. Prasad, Measurement of radon activity, exhalation rate, and radiation doses in fly ash sample from NTPC Dadri, India, Indian J. Pure Appl. Phys. 48 (2010) 520-523.
  10. R.C. Bhangare, A.P. Yousaf, S.K. Sahu, G.G. Pandit, V.D. Puranik, Distribution of trace elements in coal and combustion residues from five thermal power plants in India, Int. J. Coal Geol. 86 (2011) 349-356. https://doi.org/10.1016/j.coal.2011.03.008
  11. S.K. Sahu, M. Tiwari, R.C. Bhangare, G.G. Pandit, Enrichment and particle size dependence of polonium and other naturally occurring radionuclides in coal ash, J. Environ. Radioact. 138 (2014) 421-426, https://doi.org/10.1016/j.jenvrad.2014.04.010.
  12. S.K. Sahu, M. Tiwari, R.C. Bhangare, P.Y. Ajmal, G.G. Pandit, Partitioning behavior of natural radionuclides during combustion of coal in thermal power plants, Environ. Forensics 18 (1) (2017) 36-43. https://doi.org/10.1080/15275922.2016.1230910
  13. J. Labrincha, J.F. Puertas, W. Schroeyers, K. Kovler, Y. Pontikes, C. Nuccetelli, P. Krivenko, O. Kovalchuk, O. Petropavlovsky, M. Komljenovic, E. Fidanchevski, R. Wiegers, E. Volceanov, E. Gunay, M.A. Sanjuan, V. Ducman, B. Angjusheva, D. Bajare, T. Kovacs, G. Bator, S. Schreurs, J. Aguiar, J.L. Provis, From NORM byproducts to building materials. Chapter 7, in: W. Schroeyers (Ed.), Naturally Occurring Radioactive Materials in Construction, Integrating Radiation Protection in Reuse (COST Action Tu1301 NORM4BUILDING), Woodhead Publishing, 2017, pp. 183-251.
  14. J. Jonas, J. Somlai, E. Toth-Bodrogi, M. Hegedus, T. Kovacs, Study of a remediated coal ash depository from a radiological perspective, J. Environ. Radioact. 173 (2017) 75-84. https://doi.org/10.1016/j.jenvrad.2016.11.010
  15. R.S. Blissett, N.A. Rowson, A review of the multi-component utilization of coal fly ash, Fuel 97 (2012) 1-23. https://doi.org/10.1016/j.fuel.2012.03.024
  16. A. Zacco, L. Borgese, A. Gianoncelli, R.P.W.J. Struis, L.E. Depero, E. Bontempi, Review of fly ash inersation treatments and recycling, Environ. Chem. Lett. 12 (2014) 153-175. https://doi.org/10.1007/s10311-014-0454-6
  17. Kh Asaduzzaman, F. Mannan, M.U. Khandaker, M.S. Farook, A. Elkezza, Y.B.M. Amin, S. Sharma, H.B.A. Kassim, Assessment of natural radioactivity levels and potential radiological risks of common building materials used in Bangladeshi dwellings, PLoS One 10 (2015), e0140667. https://doi.org/10.1371/journal.pone.0140667
  18. Thanh Xuan, Can som ban hanh quy chuan su dung tro xi nhiet Cien than. Tap chi Nang luong Viet Nam. http://nangluongvietnam.vn/news/vn/nang-luong-moi-truong/can-som-ban-hanh-quy-chuan-su-dung-tro-xi-nhiet-dien-than.html, 2017. (Accessed 30 May 2020).
  19. L.K. Phon, B.D. Dung, N.D. Chau, T. Kovacs, N.V. Nam, D.V. Hao, N.T. Son, V.T.M. Luan, Estimation of effective dose rates caused by radon and thoron for inhabitants living in rare earth field in northwestern Vietnam (Lai Chau province), J. Radioanal. Nucl. Chem. 306 (2015) 309-316. https://doi.org/10.1007/s10967-014-3881-8
  20. T.T.H. Loan, V.N. Ba, N.V.T. Bang, T.H.N. Thy, H.T.Y. Hong, N.Q. Huy, Natural radioactivity and radiological health hazard assessment of chemical fertilizers in Viet Nam, J. Radioanal. Nucl. Chem. 316 (1) (2018) 111-117. https://doi.org/10.1007/s10967-018-5719-2
  21. V.N. Ba, N. Van Thang, N.Q. Dao, H.N.P. Thu, T.T.H. Loan, Study on the characteristics of natural radionuclides in surface soil in Ho Chi Minh City, Vietnam and radiological health hazard, J. Environ. Earth Sci. 78 (2019) 28. https://doi.org/10.1007/s12665-018-8026-x
  22. H.N.P. Thu, N.V. Thang, L.C. Hao, The effects of some soil characteristics on radon emanation and diffusion, J. Environ. Radioact. 216 (2020) 106189. https://doi.org/10.1016/j.jenvrad.2020.106189
  23. British Standard, Measurement of Radioactivity in the Environment - Soil. BS ISO 18589 -1, UK, 2005.
  24. R.S. Mohammed, R.S. Ahmed, Estimation of excess lifetime cancer risk and radiation hazard indices in southern Iraq, Environ Earth Sci 76 (2017) 303. https://doi.org/10.1007/s12665-017-6616-7
  25. S. Abdullahi, A.F. Ismail, S. Samat, Determination of indoor doses and excess lifetime cancer risks caused by building materials containing natural radionuclides in Malaysia, Nucl Eng and Technol 51 (1) (2019) 325-336, https://doi.org/10.1016/j.net.2018.09.017.
  26. ICRP, International Commission on Radiological Protection. Protection against Radon-222 at Home and Work, Oxford Pergamon Press; ICRP Publication, 1993. No. 65.
  27. K. Kant, S.K. Chakarvarti, Environmental impact of coal utilisation in thermal power plant, JPAFMAT 3 (2003) 15-18.
  28. A.A. Abojassim, H. Mraity, A.A. Husain, M. Wood, Estimation of the excess lifetime cancer risk from radon exposure in some buildings of Kufa Technical Institute, Iraq, Nucl Phys and At Energy 18 (3) (2017) 276-286. https://doi.org/10.15407/jnpae2017.03.276
  29. ICRP, Recommendations of the International Commission on Radiological Protection 21 (1-3) (1990). Publication No. 60.
  30. D.J. Lawi, A.A. Abojassim, Estimated the cancer risk due to ingestion of radon, radium, and uranium from medical drugs in Iraq, Int. J. Adv. Sci. Eng. Technol. 6 (2018) 54-60.
  31. S. Kamboj, E. Gnanapragasam, C. Yu, User's Guide for RESRAD-ONSITE Code. ANL/EVS/TM-18/1,United States: N, 2018, https://doi.org/10.2172/1463235. Web.
  32. N.Q. Huy, P.D. Hien, T.V. Luyen, D.V. Hoang, H.T. Hiep, N.H. Quang, N.Q. Long, D.D. Nhan, N.T. Binh, P.S. Hai, P.T. Ngo, Natural radioactivity and external dose assessment of surface soils in Vietnam, Radiat. Protect. Dosim. 151 (3) (2012) 522-531. https://doi.org/10.1093/rpd/ncs033
  33. J. Temuujin, E. Surenjav, C.H. Ruescher, J. Vahlbruch, Processing and uses of fly ash addressing radioactivity (critical review), Chemosphere 216 (2019) 866-882. https://doi.org/10.1016/j.chemosphere.2018.10.112
  34. Sakoda Akihiro, Yuu Ishimori, Kiyonori Yamaoka, A comprehensive review of radon emanation measurements for mineral, rock, soil, mill tailing and fly ash, Appl. Radiat. Isot. 69 (2011) 1422-1435. https://doi.org/10.1016/j.apradiso.2011.06.009
  35. M Mehade Hasan, Ali M. I., Paul D., Haydar M. A., Azharul Islam S. M, Natural Radioactivity and Assessment of Associated Radiation Hazards in Soil and Water Samples Collected from in and around of the Barapukuria 2×125 MW Coal Fired Thermal Power Plant, Dinajpur, Bangladesh Barapukuria 2×125 MW Coal Fired Thermal Power Plant, Dinajpur, Bangladesh, J. Nucl. Part. Phys. 4 (1) (2014) 17-24, https://doi.org/10.5923/j.jnpp.20140401.03.
  36. A.A. Qureshi, S. Tariq, K.U. Din, S. Manzoor, C. Calligaris, A. Waheed, Evaluation of excessive lifetime cancer risk due to natural radioactivity in the river, sediments of Northern Pakistan, J Radiat Res Appl Sc 7 (4) (2014) 438-447. https://doi.org/10.1016/j.jrras.2014.07.008
  37. A.S. Paschoa, F. Steinhausler, TENR - Technologically Enhanced Natural Radiation (Radioactivity in the Environment), Elsevier, 2010, p. 244.
  38. H. Taskin, M. Karavus, P. Ay, A. Topuzoglu, S. Hindiroglu, G. Karahan, Radionuclide concentrations in soil and lifetime cancer risk due to the gamma radioactivity in Kirklareli, Turkey, J. Environ. Radioact. 100 (2009) 49-53. https://doi.org/10.1016/j.jenvrad.2008.10.012
  39. K. Kovler, Radiological constraints of using building materials and industrial by-products in construction, Construct. Build. Mater. 23 (1) (2009) 246-253. https://doi.org/10.1016/j.conbuildmat.2007.12.010
  40. D.L. He, G.F. Yin, F.Q. Dong, L.B. Liu, Y.J. Luo, Research on the additives to reduce radioactive pollutants in the building materials containing fly ash, J. Hazard Mater. 177 (1-3) (2010) 573-581. https://doi.org/10.1016/j.jhazmat.2009.12.071