Acknowledgement
This work was supported by the National Natural Science Foundation of China (Project No. 51909045, China); CNNC's young talents research project (CNNC2019YTEP-HEU01, China)
References
- G. Chen, Z. Zhang, Z. Tian, X. Dong, Y. Wang, CFD simulation for the optimal design and utilization of experiment to research the flow process in PWR, Ann. Nucl. Energy 94 (2016) 1-9. https://doi.org/10.1016/j.anucene.2016.02.007
- G. Chen, Z. Zhang, Z. Tian, L. Li, X. Dong, H. Ju, Design of a CFD scheme using multiple RANS models for PWR, Ann. Nucl. Energy 102 (2017) 349-358. https://doi.org/10.1016/j.anucene.2016.12.030
- M. Conner, Y. Hassan, E. Dominguez-Ontiveros, Hydraulic benchmark data for PWR mixing vane grid, Nucl. Eng. Des. 264 (2013) 97-102. https://doi.org/10.1016/j.nucengdes.2012.12.001
- S. Chang, K. Sang, Moon, D. Bok, T. Kim, P. Won, W.-P. Baek, Y. Choi, Phenomenological investigations on the turbulent flow structures in a rod bundle array with mixing devices, Nuclear Engineering and Design - NUCL ENG DES (2008) 238.
- S. Bhattacharjee, G. Ricciardi, S. Viazzo, Comparative study of the contribution of various PWR spacer grid components to hydrodynamic and wall pressure characteristics, Nucl. Eng. Des. 317 (2017) 22-43. https://doi.org/10.1016/j.nucengdes.2017.03.011
- B. Liu, S. He, C. Moulinec, J. Uribe, Sub-channel CFD for nuclear fuel bundles, Nucl. Eng. Des. 355 (2019) 110318. https://doi.org/10.1016/j.nucengdes.2019.110318
- M. Wang, Y. Wang, X.I. Tian, S.Z. Qiu, G. Su, Recent progress of CFD applications in PWR thermal hydraulics study and future directions, Ann. Nucl. Energy 150 (2021) 107836. https://doi.org/10.1016/j.anucene.2020.107836
- B.-W. Yang, B. Han, A. Liu, S. Wang, Recent challenges in subchannel thermalhydraulics-CFD modeling, subchannel analysis, CHF experiments, and CHF prediction, Nucl. Eng. Des. 354 (2019) 110236. https://doi.org/10.1016/j.nucengdes.2019.110236
- G. Fernandez, C. Park, N. Kim, R. Haftka, Review of multi-fidelity models, arXiv preprint arXiv:1609.07196 (2016). https://www.researchgate.net/publication/315486356_Review_of_multi-fidelity_models/citations.
- M. Zarei, On a reduced order modeling of the nuclear reactor dynamics, Appl. Math. Comput. (2020) 393. https://doi.org/10.1016/S0096-3003(02)00856-1
- Y. Sun, J. Yang, Y.-H. Wang, Z. Li, Y. Ma, A POD reduced-order model for resolving the neutron transport problems of nuclear reactor, Ann. Nucl. Energy 149 (2020) 107799. https://doi.org/10.1016/j.anucene.2020.107799
- S. Lorenzi, A. Cammi, L. Luzzi, G. Rozza, POD-Galerkin method for finite volume approximation of Navier-Stokes and RANS equations, Comput. Methods Appl. Mech. Eng. (2016) 311.
- L. Vergari, A. Cammi, S. Lorenzi, Reduced order modeling approach for parametrized thermal-hydraulics problems: inclusion of the energy equation in the POD-FV-ROM method, Prog. Nucl. Energy 118 (2020) 103071. https://doi.org/10.1016/j.pnucene.2019.103071
- D. Alonso, A. Velazquez, J. Vega, Robust reduced order modeling of heat transfer in a back step flow, Int. J. Heat Mass Tran. 52 (2009) 1149-1157. https://doi.org/10.1016/j.ijheatmasstransfer.2008.09.011
- R. Chen, J. Xu, S. Zhang, C.-H. Chen, L.H. Lee, An Effective Learning Procedure for Multi-Fidelity Simulation Optimization with Ordinal Transformation, 2015.
- A. Forrester, A. Sobester, A. Keane, Engineering Design via Surrogate Modelling, A Practical Guide, 2008.
- E. Minisci, M. Vasile, Robust design of a reentry unmanned space vehicle by multifidelity evolution control, AIAA J. 51 (2013) 1284-1295. https://doi.org/10.2514/1.J051573
- M. Fossati, W. Habashi, Multiparameter analysis of aero-icing problems using proper orthogonal decomposition and multidimensional interpolation, AIAA J. 51 (2013) 946-960. https://doi.org/10.2514/1.J051877
- F. Alsayyari, M. Tiberga, Z. Perko, D. Lathouwers, J. Kloosterman, A nonintrusive adaptive reduced order modeling approach for a molten salt reactor system, Ann. Nucl. Energy 141 (2020).
- X. Wang, J. Kou, W. Zhang, Multi-fidelity surrogate reduced-order modeling of steady flow estimation, Int. J. Numer. Methods Fluid. (2020) 92. https://doi.org/10.1002/fld.3977
- M.J. Mifsud, D. MacManus, S. Shaw, A Variable-Fidelity Aerodynamic Model Using Proper Orthogonal Decomposition, 2016.
- B. Noack, From snapshots to modal expansions - bridging low residuals and pure frequencies, J. Fluid Mech. 802 (2016) 1-4. https://doi.org/10.1017/jfm.2016.416
- Z. Karoutas, C.Y. Gu, B. Scholin, 3-D flow analyses for design of nuclear fuel spacer, Proceedings of the Seventh International Meeting on Nuclear Reactor Thermal-Hydraulics (1995) 3153-3174.
- F. Wiltschko, W. Qu, J. Xiong, Validation of RANS models and Large Eddy simulation for predicting crossflow induced by mixing vanes in rod bundle, Nuclear Engineering and Technology 53 (2021) 3625-3634. https://doi.org/10.1016/j.net.2021.05.034
- C.C. Liu, Y.-M. Ferng, C.K. Shih, CFD evaluation of turbulence models for flow simulation of the fuel rod bundle with a spacer assembly, Appl. Therm. Eng. 40 (2012) 389-396. https://doi.org/10.1016/j.applthermaleng.2012.02.027
- M. Holloway, D. Beasley, M. Conner, Investigation of swirling flow in rod bundle subchannels using computational fluid dynamics, international conference on nuclear engineering, Proceedings, ICONE (2006) 2006.
- L. Xiaochang, Y. Gao, Methods of simulating large-scale rod bundle and application to a 17 × 17 fuel assembly with mixing vane spacer grid, Nucl. Eng. Des. 267 (2014) 10-22. https://doi.org/10.1016/j.nucengdes.2013.11.064
- M.D. McKay, R.J. Beckkman, W. Conover, Comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics 21 (2000) 266-294.
- ANSYS Inc, ANSYS Fluent Customization Manual. USA, 2016.
- A. Ayodeji, Z. Wang, W. Wang, W. Qin, C. Yang, S. Xu, X. Liu, Causal augmented ConvNet: a temporal memory dilated convolution model for long-sequence time series prediction, ISA Trans. (2021).
- G. Chen, J. Wang, Z. Zhang, Z. Tian, L. Li, H. Kang, Y. Jin, Distributed-parallel CFD computation for all fuel assemblies in PWR core, Ann. Nucl. Energy 141 (2020) 107340. https://doi.org/10.1016/j.anucene.2020.107340