DOI QR코드

DOI QR Code

Fabrication of diamond/W-Cu functionally graded material by microwave sintering

  • Wei, Chenlong (School of Materials Science and Engineering, Hefei University of Technology) ;
  • Cheng, Jigui (School of Materials Science and Engineering, Hefei University of Technology) ;
  • Zhang, Mei (School of Materials Science and Engineering, Hefei University of Technology) ;
  • Zhou, Rui (School of Materials Science and Engineering, Hefei University of Technology) ;
  • Wei, Bangzheng (School of Materials Science and Engineering, Hefei University of Technology) ;
  • Yu, Xinxi (School of Materials Science and Engineering, Hefei University of Technology) ;
  • Luo, Laima (School of Materials Science and Engineering, Hefei University of Technology) ;
  • Chen, Pengqi (School of Materials Science and Engineering, Hefei University of Technology)
  • 투고 : 2020.11.18
  • 심사 : 2021.08.30
  • 발행 : 2022.03.25

초록

A four-layered W/Cu functionally graded material (FGM) (W90% + Cu10%/W80% + Cu20%/W70% + Cu30%/W60% + Cu40%, wt.% fraction) and a four-layered diamond/W-Cu FGM (W90% + Cu10%/W80% + Cu20%/W70% + Cu30%/W55% + Cu40% + diamond5%, wt.% fraction) were fabricated by microwave sintering. The thermal conductivity and thermal shock resistance of diamond/W-Cu FGM and W-Cu FGM were investigated. The morphologies of the diamond particles and different FGMs were analyzed using AFM, SEM, EDS, and TEM. The results show that a 200 nm rough tungsten coating was formed on the surface of the diamond. The density of the tungsten-coated diamond/W-Cu FGM, obtained by microwave sintering at 1200 ℃ for 30 min, was 94.66%. The thermal conductivity of the fourlayered diamond/W-Cu FGM was 220 W·m-1·K-1, which is higher than that of the four-layered W/Cu FGM (209 W m-1 K-1). This indicates that adding an appropriate amount of tungsten-coated diamond to the high Cu layer W/Cu FGM improves the thermal conductivity of the composite. The diamond/W-Cu FGM sintered at 1200 ℃ for 10 min exhibited better thermal shock resistance than diamond/W-Cu FGM sintered at 1100 ℃ for 10 min.

키워드

과제정보

This work was financially supported by the National Natural Science Foundation of China (51674095, 52004079).

참고문헌

  1. R. Liu, T. Hao, K. Wang, T. Zhang, X.P. Wang, C.S. Liu, Q.F. Fang, Microwave sintering of W/Cu functionally graded materials, J. Nucl. Mater. 431 (2012) 196-201. https://doi.org/10.1016/j.jnucmat.2011.11.013
  2. W.P. Shen, Q. Li, K. Chang, Z.J. Zhou, C.C. Ge, Manufacturing and testing W/Cu functionally graded material mock-ups for plasma facing components, J. Nucl. Mater. 367-370 (2007) 1449-1452. https://doi.org/10.1016/j.jnucmat.2007.04.032
  3. J.P. Song, Y. Yu, Z.G. Zhuang, Y.Y. Lian, X. Liu, Y. Qi, Preparation of W-Cu functionally graded material coated with CVD-W for plasma-facing components, J. Nucl. Mater. 442 (2013) S208-S213. https://doi.org/10.1016/j.jnucmat.2013.01.326
  4. M.M. Gasik, Micromechanical modelling of functionally graded materials, Comput. Mater. Sci. 13 (1998) 42-55. https://doi.org/10.1016/S0927-0256(98)00044-5
  5. A. Yusefi, N. Parvin, Fabrication of three layered W-Cu functionally graded composite via spark plasma sintering, Fusion Eng. Des. 114 (2017) 196-202. https://doi.org/10.1016/j.fusengdes.2016.11.013
  6. X.Q. Tang, H.B. Zhang, D.M. Du, D. Qu, C.F. Hu, R.J. Xie, Y. Feng, Fabrication of WeCu functionally graded material by spark plasma sintering method, Int, J. Refractory Metals Hard Mater. 42 (2014) 193-199. https://doi.org/10.1016/j.ijrmhm.2013.09.005
  7. G. Pintsuk, S.E. Brunings, J.E. Doring, J. Linke, I. Smid, L. Xue, Development of W/Cu-functionally graded materials, Fusion Eng. Des. 66-68 (2003) 237-240. https://doi.org/10.1016/S0920-3796(03)00220-5
  8. E. Autissier, M. Richou, M. F Bernard, Design optimization of plasma facing component with functional gradient material Cu/W interlayer, Fusion Eng. Des. 88 (2013) 1714-1717. https://doi.org/10.1016/j.fusengdes.2013.04.042
  9. X. Chen, W. Sun, X.J. Li, X.H. Wang, H.H. Yan, K.B Li, Experimental and numerical studies on W-Cu functionally graded materials produced by explosive compaction-welding sintering, Fusion Eng. Des. 137 (2018) 349-357. https://doi.org/10.1016/j.fusengdes.2018.10.016
  10. Q. Li, C.Y. Xie, W.J. Wang, J.C. Wang, X.L. Wang, Q.R. Gao, Z. Chen, W.Q.L. Peng, Z.S. Yang, G.N. Luo, Optimization of W/Cu monoblock mock-up with FGM interlayer for CFETR devertor targets, Fusion Eng. Des. 147 (2019) 111262. https://doi.org/10.1016/j.fusengdes.2019.111262
  11. E. Autissier, M. Richou, L. Minier, J.L. Gardarein, F. Bernard, Elaboration and thermomechanical characterization of W/Cu functionally graded materials produced by Spark Plasma Sintering for plasma facing components, Fusion Eng. Des. (2015) 1929-1932, 98-99.
  12. S.B. Ren, X.Y. Shen, C.Y. Guo, N. Liu, J.B. Zang, X.B. He, X.H. Qu, Effect of coating on the microstructure and thermal conductivities of diamond-Cu composites prepared by powder metallurgy, Compos. Sci. Technol. 71 (2011) 1550-1555. https://doi.org/10.1016/j.compscitech.2011.06.012
  13. S.D. Ma, N.Q. Zhao, C.S. Shi, E.Z. Liu, C.N. He, F. He, Mo2C coating on diamond: different effects on thermal conductivity of diamond/Al and diamond/Cu composites, Appl. Surf. Sci. 402 (2017) 372-383. https://doi.org/10.1016/j.apsusc.2017.01.078
  14. H. Bai, N.G. Ma, J. Lang, C.X. Zhu, Y. Ma, Thermal conductivity of Cu/diamond composites prepared by a new pretreatment of diamond powder, Compos. Part B: Eng. 52 (2013) 182-186. https://doi.org/10.1016/j.compositesb.2013.04.017
  15. C.Y. Lu, Y. Tian, Y.F. Shen, X.M. Feng, J. Jiang, Thermal shock resistance and thermal conductivity of diamond-Cu composite coatings on Cu substrate via mechanical milling method, Surf. Coating. Technol. 352 (2018) 529-540. https://doi.org/10.1016/j.surfcoat.2018.08.033
  16. A. Elsayed, W. Li, O.A.E. Kady, W.M. Daoush, E.A. Olevsky, R.M. German, Experimental investigations on the synthesis of W-Cu nanocomposite through spark plasma sintering, J. Alloys Compd. 639 (2015) 373-380. https://doi.org/10.1016/j.jallcom.2015.03.183
  17. Z.Q. Tan, Z.Q. Li, D.B. Xiong, G.L. Fan, G. Ji, D. Zhang, A predictive model for interfacial thermal conductance in surface metallized diamond aluminum matrix composites,, Mater. Des. 55 (2014) 257-262. https://doi.org/10.1016/j.matdes.2013.09.060
  18. C.Y. Chung, M.T. Lee, M.Y. Tsai, C.H. Chu, S.J. Lin, High thermal conductive diamond/Cu-Ti composites fabricated by pressureless sintering technique, Appl. Therm. Eng. 69 (2014) 208-213. https://doi.org/10.1016/j.applthermaleng.2013.11.065
  19. J.Q. Sang, W.L. Yang, J. J Zhu, L.C. Fu, D.Y. Li, L.P. Zhou, Regulating interface adhesion and enhancing thermal conductivity of diamond/copper composites by ion beam bombardment and following surface metallization pretreatment, J. Alloys Compd. 740 (2018) 1060-1066. https://doi.org/10.1016/j.jallcom.2018.01.078
  20. Y.P. Pan, X.B. He, S.B. Ren, M. Wu, X.H. Qu, Optimized thermal conductivity of diamond/Cu composite prepared with tungsten-copper-coated diamond particles by vacuum sintering technique, Vacuum 153 (2018) 74-81. https://doi.org/10.1016/j.vacuum.2018.03.052
  21. J.H. Jia, S.X. Bai, D.G. Xiong, J. Xiao, T.N. Yan, Enhanced thermal conductivity in diamond/copper composites with tungsten coatings on diamond particles prepared by magnetron sputtering method, Mater. Chem. Phys. 252 (2020) 123422. https://doi.org/10.1016/j.matchemphys.2020.123422
  22. S.G. Dai, J.W. Li, N.X. Lu, Research progress of diamond/copper composites with high thermal conductivity, Diam. Relat. Mater. 108 (2020) 107993. https://doi.org/10.1016/j.diamond.2020.107993
  23. J.B. Chen, L.M. Huang, L.M. Luo, X. Zan, Y.C. Wu, Influence of TiC content on microstructure and properties of W-30Cu/TiC composites, rare metal mat, Eng. Times 47 (2018) 447-451.
  24. G. Friedel, G. Ribaud, A transformation of diamond at high temperature, Bull. Soc. Franc Miner. 47 (1924) 94-117.
  25. C.L. Wei, J.G. Cheng, J.F. Li, W.C. Chen, P.Q. Chen, L.M. Lu, J.W. Liu, Tungsten-coated diamond powders prepared by microwave-heating salt-bath plating, Powder Technol. 338 (2018) 274-279. https://doi.org/10.1016/j.powtec.2018.07.035
  26. F. Delannay, J.M. Missiaen, Assessment of solid state and liquid phase sintering models by comparison of isothermal densification kinetics in W and W-Cu systems, Acta Mater. 106 (2016) 22-31. https://doi.org/10.1016/j.actamat.2015.12.041
  27. A.M. Abyzov, S.V. Kidalov, F.M. Shakhov, High thermal conductivity composite of diamond particles with tungsten coating in a copper matrix for heat sink application [J], Appl. Therm. Eng. 48 (2012) 72-80. https://doi.org/10.1016/j.applthermaleng.2012.04.063
  28. A.M. Abyzov, S.V. Kidalov, F.M. Shakhov, High thermal conductivity composites consisting of diamond filler with tungsten coating and copper (silver) matrix [J], J. Mater. Sci. 46 (5) (2011) 1424-1438. https://doi.org/10.1007/s10853-010-4938-x
  29. J. Sang, W. Yang, J. Zhu, L. Fu, D. Li, L. Zhou, Regulating interface adhesion and enhancing thermal conductivity of diamond/copper composites by ion beam bombardment and following surface metallization pretreatment [J], J. Alloys Compd. 740 (2018) 1060-1066. https://doi.org/10.1016/j.jallcom.2018.01.078