Acknowledgement
This work was financially supported by the National Natural Science Foundation of China (51674095, 52004079).
References
- R. Liu, T. Hao, K. Wang, T. Zhang, X.P. Wang, C.S. Liu, Q.F. Fang, Microwave sintering of W/Cu functionally graded materials, J. Nucl. Mater. 431 (2012) 196-201. https://doi.org/10.1016/j.jnucmat.2011.11.013
- W.P. Shen, Q. Li, K. Chang, Z.J. Zhou, C.C. Ge, Manufacturing and testing W/Cu functionally graded material mock-ups for plasma facing components, J. Nucl. Mater. 367-370 (2007) 1449-1452. https://doi.org/10.1016/j.jnucmat.2007.04.032
- J.P. Song, Y. Yu, Z.G. Zhuang, Y.Y. Lian, X. Liu, Y. Qi, Preparation of W-Cu functionally graded material coated with CVD-W for plasma-facing components, J. Nucl. Mater. 442 (2013) S208-S213. https://doi.org/10.1016/j.jnucmat.2013.01.326
- M.M. Gasik, Micromechanical modelling of functionally graded materials, Comput. Mater. Sci. 13 (1998) 42-55. https://doi.org/10.1016/S0927-0256(98)00044-5
- A. Yusefi, N. Parvin, Fabrication of three layered W-Cu functionally graded composite via spark plasma sintering, Fusion Eng. Des. 114 (2017) 196-202. https://doi.org/10.1016/j.fusengdes.2016.11.013
- X.Q. Tang, H.B. Zhang, D.M. Du, D. Qu, C.F. Hu, R.J. Xie, Y. Feng, Fabrication of WeCu functionally graded material by spark plasma sintering method, Int, J. Refractory Metals Hard Mater. 42 (2014) 193-199. https://doi.org/10.1016/j.ijrmhm.2013.09.005
- G. Pintsuk, S.E. Brunings, J.E. Doring, J. Linke, I. Smid, L. Xue, Development of W/Cu-functionally graded materials, Fusion Eng. Des. 66-68 (2003) 237-240. https://doi.org/10.1016/S0920-3796(03)00220-5
- E. Autissier, M. Richou, M. F Bernard, Design optimization of plasma facing component with functional gradient material Cu/W interlayer, Fusion Eng. Des. 88 (2013) 1714-1717. https://doi.org/10.1016/j.fusengdes.2013.04.042
- X. Chen, W. Sun, X.J. Li, X.H. Wang, H.H. Yan, K.B Li, Experimental and numerical studies on W-Cu functionally graded materials produced by explosive compaction-welding sintering, Fusion Eng. Des. 137 (2018) 349-357. https://doi.org/10.1016/j.fusengdes.2018.10.016
- Q. Li, C.Y. Xie, W.J. Wang, J.C. Wang, X.L. Wang, Q.R. Gao, Z. Chen, W.Q.L. Peng, Z.S. Yang, G.N. Luo, Optimization of W/Cu monoblock mock-up with FGM interlayer for CFETR devertor targets, Fusion Eng. Des. 147 (2019) 111262. https://doi.org/10.1016/j.fusengdes.2019.111262
- E. Autissier, M. Richou, L. Minier, J.L. Gardarein, F. Bernard, Elaboration and thermomechanical characterization of W/Cu functionally graded materials produced by Spark Plasma Sintering for plasma facing components, Fusion Eng. Des. (2015) 1929-1932, 98-99.
- S.B. Ren, X.Y. Shen, C.Y. Guo, N. Liu, J.B. Zang, X.B. He, X.H. Qu, Effect of coating on the microstructure and thermal conductivities of diamond-Cu composites prepared by powder metallurgy, Compos. Sci. Technol. 71 (2011) 1550-1555. https://doi.org/10.1016/j.compscitech.2011.06.012
- S.D. Ma, N.Q. Zhao, C.S. Shi, E.Z. Liu, C.N. He, F. He, Mo2C coating on diamond: different effects on thermal conductivity of diamond/Al and diamond/Cu composites, Appl. Surf. Sci. 402 (2017) 372-383. https://doi.org/10.1016/j.apsusc.2017.01.078
- H. Bai, N.G. Ma, J. Lang, C.X. Zhu, Y. Ma, Thermal conductivity of Cu/diamond composites prepared by a new pretreatment of diamond powder, Compos. Part B: Eng. 52 (2013) 182-186. https://doi.org/10.1016/j.compositesb.2013.04.017
- C.Y. Lu, Y. Tian, Y.F. Shen, X.M. Feng, J. Jiang, Thermal shock resistance and thermal conductivity of diamond-Cu composite coatings on Cu substrate via mechanical milling method, Surf. Coating. Technol. 352 (2018) 529-540. https://doi.org/10.1016/j.surfcoat.2018.08.033
- A. Elsayed, W. Li, O.A.E. Kady, W.M. Daoush, E.A. Olevsky, R.M. German, Experimental investigations on the synthesis of W-Cu nanocomposite through spark plasma sintering, J. Alloys Compd. 639 (2015) 373-380. https://doi.org/10.1016/j.jallcom.2015.03.183
- Z.Q. Tan, Z.Q. Li, D.B. Xiong, G.L. Fan, G. Ji, D. Zhang, A predictive model for interfacial thermal conductance in surface metallized diamond aluminum matrix composites,, Mater. Des. 55 (2014) 257-262. https://doi.org/10.1016/j.matdes.2013.09.060
- C.Y. Chung, M.T. Lee, M.Y. Tsai, C.H. Chu, S.J. Lin, High thermal conductive diamond/Cu-Ti composites fabricated by pressureless sintering technique, Appl. Therm. Eng. 69 (2014) 208-213. https://doi.org/10.1016/j.applthermaleng.2013.11.065
- J.Q. Sang, W.L. Yang, J. J Zhu, L.C. Fu, D.Y. Li, L.P. Zhou, Regulating interface adhesion and enhancing thermal conductivity of diamond/copper composites by ion beam bombardment and following surface metallization pretreatment, J. Alloys Compd. 740 (2018) 1060-1066. https://doi.org/10.1016/j.jallcom.2018.01.078
- Y.P. Pan, X.B. He, S.B. Ren, M. Wu, X.H. Qu, Optimized thermal conductivity of diamond/Cu composite prepared with tungsten-copper-coated diamond particles by vacuum sintering technique, Vacuum 153 (2018) 74-81. https://doi.org/10.1016/j.vacuum.2018.03.052
- J.H. Jia, S.X. Bai, D.G. Xiong, J. Xiao, T.N. Yan, Enhanced thermal conductivity in diamond/copper composites with tungsten coatings on diamond particles prepared by magnetron sputtering method, Mater. Chem. Phys. 252 (2020) 123422. https://doi.org/10.1016/j.matchemphys.2020.123422
- S.G. Dai, J.W. Li, N.X. Lu, Research progress of diamond/copper composites with high thermal conductivity, Diam. Relat. Mater. 108 (2020) 107993. https://doi.org/10.1016/j.diamond.2020.107993
- J.B. Chen, L.M. Huang, L.M. Luo, X. Zan, Y.C. Wu, Influence of TiC content on microstructure and properties of W-30Cu/TiC composites, rare metal mat, Eng. Times 47 (2018) 447-451.
- G. Friedel, G. Ribaud, A transformation of diamond at high temperature, Bull. Soc. Franc Miner. 47 (1924) 94-117.
- C.L. Wei, J.G. Cheng, J.F. Li, W.C. Chen, P.Q. Chen, L.M. Lu, J.W. Liu, Tungsten-coated diamond powders prepared by microwave-heating salt-bath plating, Powder Technol. 338 (2018) 274-279. https://doi.org/10.1016/j.powtec.2018.07.035
- F. Delannay, J.M. Missiaen, Assessment of solid state and liquid phase sintering models by comparison of isothermal densification kinetics in W and W-Cu systems, Acta Mater. 106 (2016) 22-31. https://doi.org/10.1016/j.actamat.2015.12.041
- A.M. Abyzov, S.V. Kidalov, F.M. Shakhov, High thermal conductivity composite of diamond particles with tungsten coating in a copper matrix for heat sink application [J], Appl. Therm. Eng. 48 (2012) 72-80. https://doi.org/10.1016/j.applthermaleng.2012.04.063
- A.M. Abyzov, S.V. Kidalov, F.M. Shakhov, High thermal conductivity composites consisting of diamond filler with tungsten coating and copper (silver) matrix [J], J. Mater. Sci. 46 (5) (2011) 1424-1438. https://doi.org/10.1007/s10853-010-4938-x
- J. Sang, W. Yang, J. Zhu, L. Fu, D. Li, L. Zhou, Regulating interface adhesion and enhancing thermal conductivity of diamond/copper composites by ion beam bombardment and following surface metallization pretreatment [J], J. Alloys Compd. 740 (2018) 1060-1066. https://doi.org/10.1016/j.jallcom.2018.01.078