DOI QR코드

DOI QR Code

Development of a dose estimation code for BNCT with GPU accelerated Monte Carlo and collapsed cone Convolution method

  • Lee, Chang-Min (Division of Advanced Nuclear Engineering, POSTECH) ;
  • Lee Hee-Seock (Division of Advanced Nuclear Engineering, POSTECH)
  • Received : 2021.06.01
  • Accepted : 2021.11.11
  • Published : 2022.05.25

Abstract

A new method of dose calculation algorithm, called GPU-accelerated Monte Carlo and collapsed cone Convolution (GMCC) was developed to improve the calculation speed of BNCT treatment planning system. The GPU-accelerated Monte Carlo routine in GMCC is used to simulate the neutron transport over whole energy range and the Collapsed Cone Convolution method is to calculate the gamma dose. Other dose components due to alpha particles and protons, are calculated using the calculated neutron flux and reaction data. The mathematical principle and the algorithm architecture are introduced. The accuracy and performance of the GMCC were verified by comparing with the FLUKA results. A water phantom and a head CT voxel model were simulated. The neutron flux and the absorbed dose obtained by the GMCC were consistent well with the FLUKA results. In the case of head CT voxel model, the mean absolute percentage error for the neutron flux and the absorbed dose were 3.98% and 3.91%, respectively. The calculation speed of the absorbed dose by the GMCC was 56 times faster than the FLUKA code. It was verified that the GMCC could be a good candidate tool instead of the Monte Carlo method in the BNCT dose calculations.

Keywords

Acknowledgement

We would like to thank our colleague, Mr. Mahdi Bakhtiari, for his great supports on the methodology and reviewing the manuscript.

References

  1. R.F. Barth, P. Mi, W. Yang, Boron delivery agents for neutron capture therapy of cancer, Cancer Commun. 38 (2018) 1-15, https://doi.org/10.1186/s40880-018-0299-7.
  2. I. Kato, K. Ono, Y. Sakurai, M. Ohmae, A. Maruhashi, Y. Imahori, M. Kirihata, M. Nakazawa, Y. Yura, Effectiveness of BNCT for recurrent head and neck malignancies, Appl. Radiat. Isot. 61 (2004) 1069-1073, https://doi.org/10.1016/j.apradiso.2004.05.059.
  3. Y.C. Lin, F.I. Chou, B.H. Yang, C.W. Chang, Y.W. Chen, J.J. Hwang, Similar T/N ratio between 18F-FBPA diagnostic and BPA therapeutic dosages for boron neutron capture therapy in orthotropic tongue cancer model, Ann. Nucl. Med. 34 (2020) 58-64, https://doi.org/10.1007/s12149-019-01415-z.
  4. S. Miyatake, Y. Tamura, S. Kawabata, Clinical results of BNCT for malignant meningiomas, in: Adv. Neutron Capture Ther. 2006 Proc. 12th Int. Congr. Neutron Capture Ther, 2006, p. 638. http://inis.iaea.org/search/search.aspx?orig_q=RN:39030693.
  5. E. Bavarnegin, Y. Kasesaz, F.M. Wagner, Neutron beams implemented at nuclear research reactors for BNCT, J. Instrum. 12 (2017), https://doi.org/10.1088/1748-0221/12/05/P05005.
  6. B. Vanderstraeten, N. Reynaert, L. Paelinck, I. Madani, C. De Wagter, W. De Gersem, W. De Neve, H. Thierens, Accuracy of patient dose calculation for lung IMRT: a comparison of Monte Carlo, convolution/superposition, and pencil beam computations, Med. Phys. 33 (2006) 3149-3158, https://doi.org/10.1118/1.2241992.
  7. R.G. Zamenhof, E. Redmond, G. Solares, D. Katz, K. Riley, S. Kiger, O. Harling, Monte Carlo-based treatment planning for boron neutron capture therapy using custom designed models automatically generated from CT data, Int. J. Radiat. Oncol. Biol. Phys. 35 (1996) 383-397, https://doi.org/10.1016/0360-3016(96)00084-3.
  8. D. Nigg, C. Wemple, D. Wessol, F. Wheeler, C. Albright, M. Cohen, M. Frandsen, G. Harkin, M. Rossmeier, SERA - an advanced treatment planning system for neutron therapy and BNCT, Trans. Am. Nucl. Soc. 80 (1999).
  9. H. Kumada, K. Yamamoto, A. Matsumura, T. Yamamoto, Y. Nakagawa, Development of JCDS, a computational dosimetry system at JAEA for boron neutron capture therapy, J. Phys. Conf. Ser. 74 (2007), https://doi.org/10.1088/1742-6596/74/1/021010.
  10. K. Takada, H. Kumada, P.H. Liem, H. Sakurai, T. Sakae, Development of Monte Carlo based real-time treatment planning system with fast calculation algorithm for boron neutron capture therapy, Phys. Med. 32 (2016) 1846-1851. https://doi.org/10.1016/j.ejmp.2016.11.007
  11. H. Kumada, K. Yamamoto, T. Yamamoto, K. Nakai, Y. Nakagawa, T. Kageji, A. Matsumura, Improvement of dose calculation accuracy for BNCT dosimetry by the multi-voxel method in JCDS, Appl. Radiat. Isot. 61 (2004) 1045-1050, https://doi.org/10.1016/j.apradiso.2004.05.067.
  12. B.J. Albertson, T.E. Blue, J. Niemkiewicz, An investigation on the use of removal-diffusion theory for BNCT treatment planning: a method for determining proper removal-diffusion parameters, Med. Phys. 28 (2001) 1898-1904, https://doi.org/10.1118/1.1386424.
  13. A. Badal, A. Badano, Accelerating Monte Carlo simulations of photon transport in a voxelized geometry using a massively parallel graphics processing unit, Med. Phys. 36 (2009) 4878-4880, https://doi.org/10.1118/1.3231824.
  14. X. Jia, J. Schumann, H. Paganetti, S.B. Jiang, GPU-based fast Monte Carlo dose calculation for proton therapy, Phys. Med. Biol. 57 (2012) 7783-7797, https://doi.org/10.1088/0031-9155/57/23/7783.
  15. G. Battistoni, T. Boehlen, F. Cerutti, P.W. Chin, L.S. Esposito, A. Fasso, A. Ferrari, A. Lechner, A. Empl, A. Mairani, A. Mereghetti, P.G. Ortega, J. Ranft, S. Roesler, P.R. Sala, V. Vlachoudis, G. Smirnov, Overview of the FLUKA code, Ann. Nucl. Energy 82 (2015) 10-18, https://doi.org/10.1016/j.anucene.2014.11.007.
  16. P. Vingelmann Nvidia, F.H.P. Fitzek, CUDA (2020) release: 10.2.89, https://developer.nvidia.com/cuda-toolkit.
  17. U. Schneider, E. Pedroni, A. Lomax, The calibration of CT Hounsfield units for RTP, Phys. Med. Biol. 41 (1996) 111-124. https://doi.org/10.1088/0031-9155/41/1/009
  18. A.K. Carlsson, A. Ahnesjo, The collapsed cone superposition algorithm applied to scatter dose calculations in brachytherapy, Med. Phys. 27 (2000) 2320-2332, https://doi.org/10.1118/1.1290485.
  19. C.R. Harris, K.J. Millman, S.J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N.J. Smith, R. Kern, M. Picus, S. Hoyer, M.H. van Kerkwijk, M. Brett, A. Haldane, J.F. del Rio, M. Wiebe, P. Peterson, P. Gerard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, T.E. Oliphant, Array programming with {NumPy, Nature 585 (2020) 357-362, https://doi.org/10.1038/s41586-020-2649-2.
  20. E. Jones, T. Oliphant, P. Peterson, others, {SciPy}: Open source scientific tools for {Python}, (n.d.). http://www.scipy.org/.
  21. J. Sanders, E. Kandrot, CUDA by Example an Introduction to General-Purpose GPU Programming, Addison-Wesley Professional, 2010.
  22. S.P. Hamilton, T.M. Evans, Continuous-energy Monte Carlo neutron transport on GPUs in the Shift code, Ann. Nucl. Energy 128 (2019) 236-247, https://doi.org/10.1016/j.anucene.2019.01.012.
  23. F.B. Brown, W.R. Martin, Monte Carlo methods for radiation transport analysis on vector computers, Prog. Nucl. Energy 14 (1984) 269-299, https://doi.org/10.1016/0149-1970(84)90024-6.
  24. I. Lux, L. Koblinger, Monte Carlo Particle Transport Methods: Neutron and Photon Calculations, CRC press, 2018.
  25. D.A. Brown, M.B. Chadwick, R. Capote, et al., ENDF/B-VIII.0: the 8th major release of the nuclear reaction data library with CIELO-project cross sections, new standards and thermal scattering data, Nucl. Data Sheets 148 (2018) 1-142, https://doi.org/10.1016/j.nds.2018.02.001.
  26. X.X. Cai, T. Kittelmann, E. Klinkby, J.I. Marquez Damian, Rejection-based sampling of inelastic neutron scattering, J. Comput. Phys. 380 (2019) 400-407, https://doi.org/10.1016/j.jcp.2018.11.043.
  27. A. Ahnesjo, P. Andreo, A. Brahme, Calculation and application of point spread functions for treatment planning with high energy photon beams, Acta Oncol. (Madr.) 26 (1987) 49-56, https://doi.org/10.3109/02841868709092978.
  28. A. Gonzalez, Measurement of areas on a sphere using Fibonacci and latitude-longitude lattices, Math. Geosci. 42 (2010) 49-64, https://doi.org/10.1007/s11004-009-9257-x.
  29. J. Amanatides, A. Woo, A fast voxel traversal algorithm for ray tracing, Eurographics 87 (1987) 3-10.
  30. W. Cho, T.S. Suh, J.H. Park, L. Xing, J.W. Lee, Practical implementation of a collapsed cone convolution algorithm for a radiation treatment planning system, J. Kor. Phys. Soc. 61 (2012) 2073-2083, https://doi.org/10.3938/jkps.61.2073.
  31. I. Auterinen, T. Seren, K. Anttila, A. Kosunen, S. Savolainen, Measurement of free beam neutron spectra at eight BNCT facilities worldwide, Appl. Radiat. Isot. 61 (2004) 1021-1026, https://doi.org/10.1016/j.apradiso.2004.05.035.