DOI QR코드

DOI QR Code

3D-based equivalent model of SMART control rod drive mechanism using dynamic condensation method

  • Ahn, Kwanghyun (SMART Technology Development Division, Korea Atomic Energy Research Institute) ;
  • Lee, Kang-Heon (SMART Technology Development Division, Korea Atomic Energy Research Institute) ;
  • Lee, Jae-Seon (SMART Technology Development Division, Korea Atomic Energy Research Institute) ;
  • Chang, Seongmin (Department of Mechanical Design Engineering, Kumoh National Institute of Technology)
  • 투고 : 2021.07.20
  • 심사 : 2021.08.31
  • 발행 : 2022.03.25

초록

The SMART (System-integrated Modular Advanced ReacTor) is an integral-type small modular reactor developed by KAERI (Korea Atomic Energy Research Institute). This paper discusses the feasibility and applicability of a 3D-based equivalent model using dynamic condensation method for seismic analysis of a SMART control rod drive mechanism. The equivalent model is utilized for complicated seismic analysis during the design of the SMART. While the 1D-based beam-mass equivalent model is widely used in the nuclear industry for its calculation efficiency, the 3D-based equivalent model is suggested for the seismic analysis of SMART to enhance the analysis accuracy of the 1D-based equivalent model while maintaining its analysis efficiency. To verify the suggested model, acceleration response spectra from seismic analysis based on the 3D-based equivalent model are compared to those from the 1D-based beam-mass equivalent model and experiments. The accuracy and efficiency of the dynamic condensation method are investigated by comparison to analysis results based on the conventional modeling methodology used for seismic analysis.

키워드

과제정보

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT). (No. NRF-2020M2D7A1079180 and NRF-2019R1G1A1005401).

참고문헌

  1. V. Varma, G.R. Reddy, K.K. Vaze, H.S. Kushwaha, Simplified approach for seismic analysis of structures, Int. J. Struct. Stabil. Dynam. 2 (2002) 207-225. https://doi.org/10.1142/S021945540200052X
  2. T.W. Kim, K.B. Park, K.H. Jeong, G.M. Lee, S. Choi, Dynamic characteristics of the integral reactor SMART, J. Korean Nuclear Society 33 (2001) 111-120.
  3. J.B. Park, Y. Choi, S.J. Lee, N.C. Park, K.S. Park, Y.P. Park, C.I. Park, Modal characteristics of the APR1400 nuclear reactor internals for seismic analysis, Nucl. Eng. Technol. 46 (2014) 689-698. https://doi.org/10.5516/NET.09.2014.017
  4. K. Ahn, J.S. Lee, Dynamic equivalent model of a SMART control rod drive mechanism for a seismic analysis, Nucl. Eng. Technol. 52 (2020) 1834-1846. https://doi.org/10.1016/j.net.2020.01.009
  5. R.J. Guyan, Reduction of stiffness and mass matrices, AIAA J. 3 (2) (1965) 380. https://doi.org/10.2514/3.2874
  6. J.G. Kim, S.H. Boo, P.S. Lee, An enhanced AMLS method and its performance, Comput, Methods Appl. Mech. Engrg. 287 (2015) 90-111. https://doi.org/10.1016/j.cma.2015.01.004
  7. J.G. Kim, P.S. Lee, An enhanced Craig-Bampton method, Internat. J. Numer. Methods Engrg. 103 (2015) 79-93. https://doi.org/10.1002/nme.4880
  8. S. Chang, S. Baek, K.O. Kim, M. Cho, Structural system identification using degree of freedom-based reduction method and hierarchical clustering algorithm, J. Sound Vib. 36 (2015) 139-152.
  9. H. Sung, S. Chang, M. Cho, Structural system identification via a reduced system and sensor-location selection method, AIAA J. 57 (5) (2019) 2109-2122. https://doi.org/10.2514/1.J057757
  10. S. Chang, M. Cho, Dynamic-condensation-based reanalysis by using the Sherman-Morrison-Woodbury formula, AIAA J. 59 (3) (2021).
  11. H. Sung, S. Chang, M. Cho, Efficient model updating method for system identification using a convolutional neural network, AIAA J. 59 (9) (2021) 3480-3489. https://doi.org/10.2514/1.J059964
  12. J.C. O'Callahan, A procedure for an improved reduced system (IRS) model, in: Proceedings of the 7th International Modal Analysis Conference, Las Vegas, January, 1989, pp. 17-21.
  13. M.I. Friswell, S.D. Garvey, J.E.T. Penny, Model reduction using dynamic and iterated IRS techniques, J. Sound Vib. 186 (2) (1995) 311-323. https://doi.org/10.1006/jsvi.1995.0451
  14. M.I. Friswell, S.D. Garvey, J.E.T. Penny, The convergence of the iterated IRS method, J. Sound Vib. 211 (1) (1998) 123-132. https://doi.org/10.1006/jsvi.1997.1368
  15. Y. Xia, R. Lin, Improvement on the iterated IRS method for structural eigen-solutions, J. Sound Vib. 270 (4-5) (2004) 713-727. https://doi.org/10.1016/S0022-460X(03)00188-3
  16. https://www.ansystips.com/2017/05/component-mode-synthesiscms.html.
  17. https://sites.ualberta.ca/~wmoussa/AnsysTutorial/AT/Substructuring/Substructuring.html.
  18. R.R. Craig Jr., M.C.C. Bampton, Coupling of substructures for dynamic analyses, AIAA J. 6 (7) (1968) 1313-1319. https://doi.org/10.2514/3.4741
  19. I. Chung, M. Cho, Recent studies on the multiscale Analysis of polymer nanocomposites, Multiscale Sci. Eng. 1 (2019) 167-195. https://doi.org/10.1007/s42493-019-00022-4
  20. S. Chang, S. Yang, H. Shin, M. Cho, Multiscale homogenization model for thermoelastic behavior of epoxy-based composites with polydisperse SiC nanoparticles, Compos. Struct. 128 (2015) 342-353. https://doi.org/10.1016/j.compstruct.2015.03.041
  21. J. Lee, Multiscale finite element analysis of linear magnetic actuators using asymptotic homogenization method, Multiscale Sci. Eng. 1 (2019) 70-75. https://doi.org/10.1007/s42493-018-00013-x
  22. S. Chang, J. Moon, M. Cho, Stress-diffusion coupled multiscale analysis of Si anode for Li-ion battery, J. Mech. Sci. Technol. 29 (11) (2015) 4807-4816. https://doi.org/10.1007/s12206-015-1055-4
  23. S.H. Lee, Y. Kim, D. Gong, et al., Fast and novel computational methods for multi-scale and multi-physics: FETI and POD-ROM, Multiscale Sci. Eng. 2 (2020) 189-197. https://doi.org/10.1007/s42493-020-00048-z
  24. J. Kim, P. Lee, An accurate error estimator for Guyan reduction, Comput. Methods Appl. Mech. Eng. 278 (2014) 1-19. https://doi.org/10.1016/j.cma.2014.05.002
  25. J. Kim, S. Boo, C. Lee, P. Lee, On the computational efficiency of the error estimator for Guyan reduction, Comput. Methods Appl. Mech. Eng. 305 (2016) 759-776. https://doi.org/10.1016/j.cma.2016.03.030